一、tensorflow中的tf.group()
1.用处
tf.group()常用于组合一些训练节点,如在Cycle GAN中的多个训练节点,例子如:
generator_train_op = tf.train.AdamOptimizer(g_loss, ...)
discriminator_train_op = tf.train.AdamOptimizer(d_loss,...)
train_ops = tf.groups(generator_train_op ,discriminator_train_op)
with tf.Session() as sess:
sess.run(train_ops)
# 一旦运行了train_ops,那么里面的generator_train_op和discriminator_train_op都将被调用
2.演示
x = tf.constant(5, dtype=tf.float32)
y = tf.constant(7, dtype=tf.float32)
multi = x * y
add = x + y
sub = x - y
train_op = tf.group(multi, add, sub)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
print(sess.run(train_op))
tf.group(multi, add, sub, 这个可以一直写下去的)因为源码定义是*args。
sess.run(tf.group())结果是None
二、tf.tuple()
1.和tf.group()的区别
tuple返回的是tensor,可以查看结果。
2.演示
x = tf.constant(5, dtype=tf.float32)
y = tf.constant(7, dtype=tf.float32)
multi = x * y
add = x + y
sub = x - y
# 这里传的是 list[op]
train_op = tf.tuple([multi, add, sub])
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
print(sess.run(train_op))
结果是 [35.0, 12.0, -2.0]
参考自 https://blog.youkuaiyun.com/LoseInVain/article/details/81703786