自定义数据集 使用paddlepaddle框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测

import numpy as np
import paddle
import paddle.nn as nn

seed = 1
paddle.seed(seed)

data = [[-0.5, 7.7], [1.8, 98.5], [0.9, 57.8], [0.4, 39.2],
        [-1.4, -15.7], [-1.4, -37.3], [-1.8, -49.1], [1.5, 75.6],
        [0.4, 34.0], [0.8, 62.3]]

# 将数据转为NumPy数组格式
data = np.array(data)

# 分离特征(x)和标签(y),x是输入,y是输出
x_data = data[:, 0]
y_data = data[:, 1]

# 将数据转为Paddle张量类型,paddle.to_tensor用于转换
x_train = paddle.to_tensor(x_data, dtype=paddle.float32)
y_train = paddle.to_tensor(y_data, dtype=paddle.float32)


# 定义线性回归模型,继承自paddle.nn.Layer
class LinearModel(nn.Layer):
    def __init__(self):
        # 初始化时,定义一个线性层(1个输入特征和1个输出特征)
        super(LinearModel, self).__init__()
        self.linear = nn.Linear(1, 1)

    def forward(self, x):
        # 前向传播,输入x通过线性层计算输出
        x = self.linear(x)
        return x


# 实例化模型对象
model = LinearModel()

# 定义损失函数,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值