dstream.foreachRDD 创建连接对象 反序列化失败 解决办法

本文介绍了一个使用Spark Streaming从Kafka接收数据并存入HBase的应用案例。在实现过程中遇到了HTable序列化的问题,原因是连接创建于driver端而worker端无法正确反序列化。文章分享了解决该问题的方法,并提供了参考链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

开发一个采集程序,从客户端发送数据到服务端,服务端传给kafka

集群上启动sparkStreaming 接受kafka数据存入HBase

遇到一个小坑

程序报无法序列化 Htable

就是因为dstream.foreachRDD() 是在driver端启动的  创建 hbase连接的时候是在driver端创建的,需要把连接发送到每个worker上时反序列化失败

解决办法 参考下面:

https://blog.youkuaiyun.com/jiangpeng59/article/details/53318761

https://blog.youkuaiyun.com/Dax1n/article/details/59172244

package cn.itcast.edu.analysis import cn.itcast.edu.bean.Answer import cn.itcast.edu.utils.RedisUtil import com.google.gson.Gson import org.apache.kafka.common.serialization.StringDeserializer import org.apache.spark.ml.recommendation.ALSModel import org.apache.spark.sql.functions.udf import org.apache.spark.{SparkContext, streaming} import org.apache.spark.sql.{SaveMode, SparkSession} import org.apache.spark.streaming.StreamingContext import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies} import java.util.Properties object StreamingRecommend { def main(args: Array[String]): Unit = { val spark:SparkSession = SparkSession.builder() .appName("streamingrecommend") .master("local[*]") .config("spark.sql.shuffle.partitions", "3") .getOrCreate() val sc:SparkContext = spark.sparkContext val ssc:StreamingContext = new StreamingContext( sc, streaming.Seconds(5) ) import spark.implicits._ val kafkaParams = Map[String, Object]( "bootstrap.servers" -> "hadoop01:9092,hadoop02:9092", "key.deserializer" -> classOf[StringDeserializer], "value.deserializer" -> classOf[StringDeserializer], "group.id" -> "StreamingRecommend", ) val topic = Array("edu") val kafkaDStream = KafkaUtils.createDirectStream[String, String]( ssc, LocationStrategies.PreferConsistent, ConsumerStrategies.Subscribe[String, String](topic, kafkaParams) ) //获取Redis连接配置,并读取存储在Redis中推荐模型的存储路径 kafkaDStream.map(_.value()).foreachRDD(rdd => { if (!rdd.isEmpty()) { val jedis = RedisUtil.pool.getResource val path = jedis.hget( "model", "recommended_question_id" ) //加载推荐模型 val model = ALSModel.load(path) //解析JSON格式的数据,将解析的数据与样例类Answer中的字段进行映射 val answerDF = rdd.coalesce(1) .map(josnStr => { val gson = new Gson() gson.fromJson(josnStr, classOf[Answer]) }).toDF() val id = udf((student_id: String) => { student_id.split("_")(1).toInt }) val studentIdDF = answerDF.select( id ($"student_id") as "student_id" ) val recommendDF = model.recommendForUserSubset( studentIdDF, 10 ) val recommendResultDF = recommendDF .as[(Int, Array[(Int, Float)])] .map(t => { val studentIdStr = "学生ID_" + t._1 val questionIdsStr = t._2.map("题目ID_" + _._1) .mkString(",") (studentIdStr, questionIdsStr) }).toDF("student_id", "recommendations") val allInfoDF = answerDF.join( recommendResultDF, "student_id" ) allInfoDF.show(false) if (allInfoDF.count() > 0) { val properties = new Properties() properties.setProperty("user", "root") properties.setProperty("password", "123456") allInfoDF .write .mode(SaveMode.Append) .jdbc( "jdbc:mysql://hadoop01:3306/edu?" + "createDatabaseIfNotExist=true&" + "useUnicode=true&characterEncoding=utf8", "t_recommended", properties ) } jedis.close() } } ) //启动StreamingContext ssc.start() //使StreamingContext持续运行,除非人为干预停止 ssc.awaitTermination() ssc.stop(stopSparkContext = true, stopGracefully = true) } }
最新发布
06-17
改进代码:import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.streaming.{Seconds, StreamingContext} import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream} object UpdateStateByKeyTest { //newValues表示当前批次汇总成的(K,V)中相同K的所有V //runningCount表示历史的所有相同key的value总和 def updateFunction(newValues: Seq[Int], runningCount: Option[Int]): Option[Int] = { val newCount = runningCount.getOrElse(0) + newValues.sum Some(newCount) } def main(args: Array[String]): Unit = { //1.创建SparkConf对象 val sparkConf: SparkConf = new SparkConf().setAppName("UpdateStateByKeyTest").setMaster("local[2]") //2.创建SparkContext对象 val sc: SparkContext = new SparkContext(sparkConf) //3.设置日志级别 sc.setLogLevel("WARN") //4.创建StreamingContext,两个参数:1.SparkContext对象 2.批处理时间间隔 val ssc: StreamingContext = new StreamingContext(sc, Seconds(5)) //5.配置检查点目录,使用updateStateByKey()方法必须配置检查点目录 ssc.checkpoint("./") //6.连接socket服务,需要socket的地址,端口号,存储级别 val dstream: ReceiverInputDStream[String] = ssc.socketTextStream("192.168.92.131", 9999) //7.按空格切分每一行,并且将切分出来的单词出现的次数记录为1 val wordAndOne: DStream[(String, Int)] = dstream.flatMap(_.split(" ")).map(word => (word, 1)) //8.调用UpdateStateByKey操作,统计每个单词在全局中出现的次数 val result: DStream[(String,Int)] = wordAndOne.updateStateByKey(updateFunction) //9.打印输出结果 result.print() //10.开启流式计算 ssc.start() //11.用于保持程序一直运行,除非人为干预停止 ssc.awaitTermination() } }
05-28
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值