【神经网络压缩】A GRADIENT FLOW FRAMEWORK FOR ANALYZING NETWORK PRUNING

一、重要性评判准则:

变量说明:Θ(t)代表t时刻的参数; g(Θ(t))为loss对t时刻参数的梯度;H(Θ(t))为Hessian矩阵;损失为L(Θ(t));I(Θp(t))为重要性。

1.Magnitude-based measures:

在这里插入图片描述

2.Loss-preservation based measures

在这里插入图片描述

3.Increase in gradient-norm based measures:

在这里插入图片描述

二、论文第四节

1.GRADIENT FLOW AND MAGNITUDE-BASED PRUNING

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值