欧拉习题30

题目如下:

Surprisingly there are only three numbers that can be written as the sum of fourth powers of their digits:

\newline1634=1^4+6^4+3^4+4^4\newline 8208=8^4+2^4+0^4+8^4\newline 9474=9^4+4^4+7^4+4^4
 

As 1 = 1^4 is not a sum it is not included.

The sum of these numbers is 1634 + 8208 + 9474 = 19316.

Find the sum of all the numbers that can be written as the sum of fifth powers of their digits.

算是水仙花数的升级版本吧

clear;clc;close all
c = [];
for i = 2 : 1e6
    n = ceil(log10(i+1));
    if sum(mod(floor(i./10.^(0:n-1)),10).^5)==i
        c = [c,i];
    end
end
sum(c)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值