class SimpleCNN(nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
layer1 = nn.Sequential()
#class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)
layer1.add_module('conv1', nn.Conv2d(3, 32, 3, 1, padding=1))#b, 32, 32,32 #输入数据体的深度;out channels 表示输出数据体的深度;
layer1.add_module('relu1', nn.ReLU(True))
layer1.add_module('pool1', nn.MaxPool2d(2,2))#b, 32, 16,16
self.layer1 = layer1
layer2 = nn.Sequential()
layer2.add_module('conv2', nn.Conv2d(32, 64, 3, 1, padding=1))#b, 64, 16,16
layer2.add_module('relu2', nn.ReLU(True))
layer2.add_module('pool2', nn.MaxPool2d(2,2))#b, 64, 8,8
self.layer2 = layer2
laye
pytorch中children()modules(),named_children(),named_modules(),named_parameters(),parameters()的使用
最新推荐文章于 2024-05-26 12:17:40 发布
