from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
def knn_selector():
iris = load_iris()
x_train,x_test,y_train,y_test = train_test_split(iris.data, iris.target, test_size=0.3)
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)
estimator = KNeighborsClassifier(n_neighbors = 3)
estimator.fit(x_train, y_train)
# estimator.predict(x_test)
score = estimator.score(x_test, y_test)
print("score: ", score)
if __name__ == "__main__":
knn_selector()
import matplotlib.pyplot as plt
from sk