学习了如何使用优先经验回放 并用pytorch写了一遍
1.主函数
from RL_Brain import PrioritizedDQNAgent
import gym
import numpy as np
def train(RL):
total_steps = 0
steps = []
episodes = []
for episode in range(20):
observation = env.reset()
while True:
env.render()
action = RL.choose_action(observation)
# 强化学习环境的期望输入动作是一个numpy数组
observation_, reward, done, info = env.step(action)
if done:
reward = 10
RL.store_transition(observation, action, reward, observation_)
if total_steps > MEMORY_SIZE:
RL.learn()
if done:
print('episode',episode,'finished')
steps.append(total_steps)
episodes.append(episode)
break
observation = observation_
total_steps += 1
if __name__ == '__main__':
env = gym.make('MountainCar-v0')
env = env.unwrapped
env.seed(1)
MEMORY_SIZE = 10000
RL = PrioritizedDQNAgent(n_actions = 3,n_features = 2,
memory_size = MEMORY_SIZE,
e_greedy_increment= 0.00005,
output_graph=True
)
train(RL)
2.RL_Brain
"""
agent代码
"""
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
np.random.seed(42)
torch.manual_seed(2)
class SumTree:
data_pointer = 0
def __init__(self, capacity):
self.capacity = capacity
self.tree = np.zeros(2*self.capacity - 1)
self.data = np.zeros(self.capacity, dtype=object)
def add(self, p, data):
tree_idx = self.data_pointer + self.capacity - 1
self.data[self.data_pointer] = data
self.update(tree_idx, p)
self.data_pointer += 1
if self.data_pointer >= self.capacity:
self.data_pointer = 0
def update(self, tree_idx, p):
change = p - self.tree[tree_idx]
self.tree[tree_idx] = p
while tree_idx != 0:
tree_idx = (tree_idx-1)//2
self.tree[tree_idx] += change
def get_leaf(self,v):
parent_idx = 0
while True:
cl_idx = 2*parent_idx + 1
cr_idx = cl_idx + 2
if cl_idx >= len(self.tree):
leaf_idx = parent_idx
break
else:
if v <= self.tree[cl_idx]:
parent_idx = cl_idx
else:
v -= self.tree[cl_idx]
parent_idx = cr_idx
data_idx = leaf_idx - (self.capacity - 1)
return leaf_idx, self.tree[leaf_idx], self.data[data_idx]
@property
def total_p(self):
return self.tree[0]
class Memory:
epsilon = 0.01
alpha = 0.6
beta = 0.4
beta_increment_per_sampling = 0.001
abs_err_upper = 1
def __init__(self,capacity):
self.tree = SumTree(capacity)
def store(self, transition):
max_p = np.max(self.tree.tree[-self.tree.capacity:])
if max_p == 0:
max_p = self.abs_err_upper
self.tree.add(max_p, transition)
def sample(self, n):
b_idx, b_memory, ISWeights = np.empty((n,), dtype=np.int32), np.empty((n,self.tree.data[0].size)),np.empty((n,1))
pri_seg = self.tree.total_p / n
self.beta = np.min([1.,self.beta + self.beta_increment_per_sampling])
min_prob = np.min(self.tree.tree[-self.tree.capacity:]) / self.tree.total_p
for i in range(n):
a, b = pri_seg * i, pri_seg * (i + 1)
v = np.random.uniform(a, b)
idx, p, data = self.tree.get_leaf(v)
prob = p / self.tree.total_p
ISWeights[i, 0 ] = np.power(prob/min_prob, -self.beta)
b_idx[i], b_memory[i,:] = idx, data
return b_idx, b_memory, ISWeights
def batch_update(self, tree_idx, abs_errors):
abs_errors += self.epsilon
clipped_errors = np.minimum(abs_errors, self.abs_err_upper)
ps = np.power(clipped_errors, self.alpha)
for ti, p in zip(tree_idx, ps):
self.tree.update(ti, p)
class Network(nn.Module):
def __init__(self,n_features,n_actions,n_neuron=10):
super(Network, self).__init__()
self.net = nn.Sequential(
nn.Linear(in_features=n_features, out_features=n_neuron, bias=True),
nn.ReLU(),
nn.Linear(in_features=n_neuron, out_features=n_actions, bias=True)
)
def forward(self,s):
s = s.float()
q = self.net(s)
return q
class PrioritizedDQNAgent:
def __init__(
self,
n_actions,
n_features,
learning_rate=0.005,
reward_decay=0.9,
e_greedy=0.9,
replace_target_iter=500,
memory_size=10000,
batch_size = 32,
e_greedy_increment = None,
output_graph= False
):
self.n_actions = n_actions
self.n_features = n_features
self.lr = learning_rate
self.gamma = reward_decay
self.epsilon_max = e_greedy
self.replace_target_iter = replace_target_iter
self.memory_size = memory_size
self.batch_size = batch_size
self.e_greedy_increment = e_greedy_increment
self.epsilon = 0 if e_greedy_increment is not None else self.epsilon_max
self.learn_step_counter = 0
self.memory = Memory(capacity=memory_size)
self.eval_net = Network(self.n_features,self.n_actions)
self.target_net = Network(self.n_features,self.n_actions)
self.loss_function = nn.MSELoss(reduction='none')
self.optimizer = torch.optim.Adam(self.eval_net.parameters(),lr=self.lr)
self.cost_his = []
def store_transition(self,s,a,r,s_):
# 检查对象是否包含对应的属性 没有 则创建
transition = np.hstack((s, [a, r], s_))
self.memory.store(transition)
def choose_action(self,observation):
# 将一维向量转化为二维矩阵
observation = observation[np.newaxis,:]
if np.random.uniform() < self.epsilon:
s = torch.tensor(observation)
actions_value = self.eval_net(s)
action = [np.argmax(actions_value.detach().numpy())][0]
else:
action = np.random.randint(0,self.n_actions)
return action
def replace_target_params(self):
self.target_net.load_state_dict(self.eval_net.state_dict())
def learn(self):
if self.learn_step_counter % self.replace_target_iter == 0 :
self.replace_target_params()
print('\ntarget params replaced\n')
# 更清晰的写法(功能等效)
# if self.memory_counter > self.memory_size:
# batch_memory = self.memory.sample(self.batch_size)
# else:
# batch_memory = self.memory.iloc[:self.memory_counter].sample(
# self.batch_size, replace=True
# )
tree_idx, batch_memory, ISWeights = self.memory.sample(self.batch_size)
ISWeights_tensor = torch.tensor(ISWeights, dtype=torch.float32).squeeze(1)
s = torch.tensor(batch_memory[:, :self.n_features], dtype = torch.float32)
s_ = torch.tensor(batch_memory[:,-self.n_features:], dtype = torch.float32)
q_eval = self.eval_net(s)
q_next = self.target_net(s_)
q_target = q_eval.clone()
batch_index = np.arange(self.batch_size,dtype=np.int32)
eval_act_index = batch_memory[:,self.n_features].astype(int)
reward = batch_memory[:,self.n_features+1].astype(np.float32)
# 注意pandas和pytorch的value用法不同 前者是返回数组 后者返回最大值
q_target[batch_index, eval_act_index] = torch.tensor(reward).float() + self.gamma * q_next.max(dim= 1).values.float()
loss = self.loss_function(q_target,q_eval)
loss_per_action = loss[torch.arange(32), eval_act_index]
weighted_loss = (loss_per_action * ISWeights_tensor).mean()
self.optimizer.zero_grad()
weighted_loss.backward()
self.optimizer.step()
with torch.no_grad():
abs_errors = torch.abs(q_target - q_eval).max(dim=1).values.numpy() # 取每个样本的最大TD误差绝对值
# 调用优先经验回放的更新方法
self.memory.batch_update(tree_idx, abs_errors)
self.cost_his.append(loss.detach().numpy())
self.epsilon = self.epsilon + self.e_greedy_increment if self.epsilon < self.epsilon_max else self.epsilon_max
self.learn_step_counter += 1
def plot_cost(self):
plt.figure()
plt.plot(np.arange(len(self.cost_his)),self.cost_his)
plt.show()