Double DQN pytorch(莫烦python学习笔记)

学习莫烦的强化学习课 改写了一个pytorch版本的

主要改动包括:

1.改为pytorch版本

2.更新了env环境为v1,并把其中的reward标准化改了(新版v1reward的范围是-16.27-1)

3.改动了部分超参数使训练效果更好

1.RL_Brain

"""
agent代码
"""

import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import matplotlib.pyplot as plt

np.random.seed(42)
torch.manual_seed(2)
class Network(nn.Module):
    def __init__(self,n_features,n_actions,n_neuron=128):
        super(Network, self).__init__()
        self.net = nn.Sequential(
            nn.Linear(in_features=n_features, out_features=n_neuron, bias=True),
            nn.ReLU(),
            nn.Linear(in_features=n_neuron, out_features=n_actions, bias=True)
        )

    def forward(self,s):
        s = s.float()
        q = self.net(s)
        return q


class DoubleDQN:
    def __init__(
            self,
            n_actions,
            n_features,
            learning_rate=0.005,
            reward_decay=0.9,
            e_greedy=0.9,
            replace_target_iter=200,
            memory_size=3000,
            batch_size = 64,
            e_greedy_increment = None,
            output_graph=True
    ):
        self.n_actions = n_actions
        self.n_features = n_features
        self.lr = learning_rate
        self.gamma = reward_decay
        self.epsilon_max = e_greedy
        self.replace_target_iter = replace_target_iter
        self.memory_size = memory_size
        self.batch_size = batch_size
        self.e_greedy_increment = e_greedy_increment
        self.epsilon = 0 if e_greedy_increment is not None else self.epsilon_max

        self.learn_step_counter = 0
        self.memory = pd.DataFrame(np.zeros((self.memory_size, self.n_features * 2 + 2)))

        self.eval_net = Network(self.n_features,self.n_actions)
        self.target_net = Network(self.n_features,self.n_actions)
        self.loss_function = nn.MSELoss()
        self.optimizer = torch.optim.Adam(self.eval_net.parameters(),lr=self.lr)

        self.cost_his = []

    def store_transition(self,s,a,r,s_):
        # 检查对象是否包含对应的属性 没有 则创建
        if not hasattr(self, 'memory_counter'):
            self.memory_counter = 0
        # 保证数据类型一致
        transition = np.hstack((s,[r,a],s_))
        # 覆盖旧的经验
        index = self.memory_counter % self.memory_size
        self.memory.iloc[index, :] = transition
        self.memory_counter += 1

    def choose_action(self,observation):
        # 将一维向量转化为二维矩阵
        observation = observation[np.newaxis,:]

        if np.random.uniform() < self.epsilon:
            s = torch.tensor(observation)
            actions_value = self.eval_net(s)
            action = [np.argmax(actions_value.detach().numpy())][0]
        else:
            action = np.random.randint(0,self.n_actions)
        return action

    def replace_target_params(self):
        self.target_net.load_state_dict(self.eval_net.state_dict())

    def learn(self):
        if self.learn_step_counter % self.replace_target_iter == 0 :
            self.replace_target_params()
            print('\ntarget params replaced\n')

        # 更清晰的写法(功能等效)
        if self.memory_counter > self.memory_size:
            batch_memory = self.memory.sample(self.batch_size)
        else:
            batch_memory = self.memory.iloc[:self.memory_counter].sample(
                self.batch_size, replace=True
            )
        s = torch.tensor(batch_memory.iloc[:,:self.n_features].values)
        s_ = torch.tensor(batch_memory.iloc[:,-self.n_features:].values)
        q_eval = self.eval_net(s)
        q_next = self.target_net(s_)

        q_target = q_eval.clone()
        batch_index = np.arange(self.batch_size,dtype=np.int32)
        eval_act_index = batch_memory.iloc[:,self.n_features+1].values.astype(int)

        q_eval_ = self.eval_net(s_)
        max_action_index = torch.argmax(q_eval_,dim=1)



        reward = batch_memory.iloc[:,self.n_features].values
        # 注意pandas和pytorch的value用法不同 前者是返回数组 后者返回最大值
        q_target[batch_index, eval_act_index] = torch.tensor(reward).float() + self.gamma * q_next.gather(dim=1,index=max_action_index.unsqueeze(1)).squeeze(1)
        loss = self.loss_function(q_target,q_eval)
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        self.cost_his.append(loss.detach().numpy())

        self.epsilon = self.epsilon + self.e_greedy_increment if self.epsilon < self.epsilon_max else self.epsilon_max
        self.learn_step_counter += 1
    def plot_cost(self):
        plt.figure()
        plt.plot(np.arange(len(self.cost_his)),self.cost_his)
        plt.show()

 2.主函数

"""
主函数
"""
import gym
from RL_Brain import DoubleDQN
import numpy as np
import matplotlib.pyplot as plt

def train(RL):
    step = 0
    observation = env.reset()
    rewards = []  # 记录每个step的奖励
    avg_rewards = []  # 记录滑动平均奖励
    # 这种单循环 + 总步数判断的写法用来完成无终点任务
    while True:
        env.render()
        action = RL.choose_action(observation)

        f_action = (action - (ACTION_SPACE - 1) / 2) / ((ACTION_SPACE - 1) / 4)
        # 强化学习环境的期望输入动作是一个numpy数组
        observation_, reward, done, info = env.step(np.array([f_action]))
        reward /= 16.27

        RL.store_transition(observation, action, reward, observation_)

        if step > MEMORY_SIZE:
            RL.learn()
        rewards.append(reward)
        if len(rewards) >= 100:  # 计算滑动平均奖励
            avg_rewards.append(np.mean(rewards[-100:]))

        if step - MEMORY_SIZE > 20000:
            break
        observation = observation_
        step += 1
    plt.plot(rewards, label='Reward')
    plt.plot(avg_rewards, label='Average Reward (last 100 steps)')
    plt.xlabel('Steps')
    plt.ylabel('Reward')
    plt.legend()
    plt.show()

if __name__ == '__main__':

    env = gym.make('Pendulum-v1')
    env = env.unwrapped
    env.seed(1)
    ACTION_SPACE = 11
    MEMORY_SIZE = 3000
    RL = DoubleDQN(ACTION_SPACE,n_features = 3,
                      learning_rate = 0.01,
                      reward_decay = 0.9,
                      e_greedy = 0.9,
                      replace_target_iter = 200,
                      memory_size = MEMORY_SIZE,
                      e_greedy_increment= 0.001,
                      output_graph=True
                     )
    train(RL)



参考:Double DQN | 莫烦Python

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值