JUC并发编程第八章——原子操作类

        Atomic 翻译成中文是原子的意思。在化学上,我们知道原子是构成一般物质的最小单位,在化学反应中是不可分割的。在我们这里 Atomic 是指一个操作是不可中断的。即使是在多个线程一起执行的时候,一个操作一旦开始,就不会被其他线程干扰。

Atomic相关类

阿里巴巴开发手册的说明:


1 CountDownLatch介绍和使用

1.1 介绍

        CountDownLatch 是 Java 中的一个并发工具类,用于协调多个线程之间的同步。其作用是让某一个线程等待多个线程的操作完成之后再执行。它可以使一个或多个线程等待一组事件的发生,而其他的线程则可以触发这组事件。

1.2 特性

1. CountDownLatch 可以用于控制一个或多个线程等待多个任务完成后再执行。

2. CountDownLatch 的计数器只能够被减少,不能够被增加。

3. CountDownLatch 的计数器初始值为正整数,每次调用 countDown() 方法会将计数器减 1,计数器为 0 时,等待线程开始执行。

1.3 实现原理

        CountDownLatch 的实现原理比较简单,它主要依赖于 AQS(AbstractQueuedSynchronizer)框架来实现线程的同步。

    CountDownLatch 内部维护了一个计数器,该计数器初始值为 N,代表需要等待的线程数目,当一个线程完成了需要等待的任务后,就会调用 countDown() 方法将计数器减 1,当计数器的值为 0 时,等待的线程就会开始执行。

1.4 适用场景

1. 主线程等待多个子线程完成任务后再继续执行。例如:一个大型的任务需要被拆分成多个子任务并交由多个线程并行处理,等所有子任务都完成后再将处理结果进行合并。

2. 启动多个线程并发执行任务,等待所有线程执行完毕后进行结果汇总。例如:在一个并发请求量比较大的 Web 服务中,可以使用 CountDownLatch 控制多个线程同时处理请求,等待所有线程处理完毕后将结果进行汇总。

3. 线程 A 等待线程 B 执行完某个任务后再执行自己的任务。例如:在多线程中,一个节点需要等待其他节点的加入后才能执行某个任务,可以使用 CountDownLatch 控制节点的加入,等所有节点都加入完成后再执行任务。

4. 多个线程等待一个共享资源的初始化完成后再进行操作。例如:在某个资源初始化较慢的系统中,可以使用 CountDownLatch 控制多个线程等待共享资源初始化完成后再进行操作。

CountDownLatch 适用于多线程任务的协同处理场景,能够有效提升多线程任务的执行效率,同时也能够降低多线程任务的复杂度和出错率。

1.5 注意事项

1. CountDownLatch 对象的计数器只能减不能增,即一旦计数器为 0,就无法再重新设置为其他值,因此在使用时需要根据实际需要设置初始值。

2. CountDownLatch 的计数器是线程安全的,多个线程可以同时调用 countDown() 方法,而不会产生冲突。

3. 如果 CountDownLatch 的计数器已经为 0,再次调用 countDown() 方法也不会产生任何效果。

4. 如果在等待过程中,有线程发生异常或被中断,计数器的值可能不会减少到 0,因此在使用时需要根据实际情况进行异常处理。

5. CountDownLatch 可以与其他同步工具(如 Semaphore、CyclicBarrier)结合使用,实现更复杂的多线程同步。        

1.6 使用案例

class MyNumber{
    AtomicInteger atomicInteger = new AtomicInteger();
    public void addPlusPlus(){
        atomicInteger.getAndIncrement();
    }
}

public class AtomicIntegerDemo {
    public static final int SIZE = 50;
    public static void main(String[] args) {
        MyNumber myNumber = new MyNumber();
        for(int i = 1;i <= SIZE;i ++){
            new Thread(() -> {
                for(int j = 1;j <= 1000;j ++){
                    myNumber.addPlusPlus();
                }
            },String.valueOf(i)).start();
        }
        System.out.println(Thread.currentThread().getName()+"\t"+"result: "+myNumber.atomicInteger);
    }
}
//本来应该是50000
//1试-main  result: 39000
//2试-main  result: 40178
//?是不是我们的程序有问题?

//因为上面的50*  1000个计算还没结束,他就去get数值了
```*

   解决

```java
//方法一(不推荐,做做Demo还行)
public class AtomicIntegerDemo {
    public static final int SIZE = 50;
    public static void main(String[] args) {
        MyNumber myNumber = new MyNumber();
        for(int i = 1;i <= SIZE;i ++){
            new Thread(() -> {
                for(int j = 1;j <= 1000;j ++){
                    myNumber.addPlusPlus();
                }
            },String.valueOf(i)).start();
        }
        try {
            TimeUnit.SECONDS.sleep(2);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println(Thread.currentThread().getName()+"\t"+"result: "+myNumber.atomicInteger);
    }
}

//方法二-减法计数器CountDownLatch
public class AtomicIntegerDemo {
    public static final int SIZE = 50;
    public static void main(String[] args) throws InterruptedException {
        MyNumber myNumber = new MyNumber();
        CountDownLatch countDownLatch = new CountDownLatch(SIZE);
        for(int i = 1;i <= SIZE;i ++){
            new Thread(() -> {
                try {
                    for(int j = 1;j <= 1000;j ++){
                        myNumber.addPlusPlus();
                    }
                } finally {
                    countDownLatch.countDown();
                }
            },String.valueOf(i)).start();
        }
        countDownLatch.await();
        System.out.println(Thread.currentThread().getName()+"\t"+"result: "+myNumber.atomicInteger);
    }
}
//main  result: 50000

        说明:由于方案一中,不知道我们创建的五十个线程是么时候执行完毕,因此main线程的sleep时间不好控制。时间短了,五十个线程还没全部计算完就打印结果,时间长了main阻塞太久。

        因此,采用方案二CountDownLatch,五十个线程每次执行完一个,计数器减一个。直到减为零个,CountDownLatch.await()方法就会往下执行。


2 基本类型原子类

  • AtomicInteger:整型原子类
  • AtomicBoolean:布尔型原子类
  • AtomicLong:长整型原子类

常用api:

public final int get() //获取当前的值
public final int getAndSet(int newValue) //获取当前的值,并设置新的值
public final int getAndIncrement() //获取当前的值,并自增
public final int getAndDecrement() //获取当前的值,并自减
public final int getAndAdd(int delta) //获取当前的值,并加上预期的值
boolean compareAndSet(int expect, int update) //如果输入的数值等于预期值,则以原子方式将该值设置为输入值(update)
public final void lazySet(int newValue) //最终设置为newValue,使用 lazySet 设置之后可能导致其他线程在之后的一小段时间内还是可以读到旧的值

3 数组类型原子类

  • AtomicIntegerArray:整型数组原子类
  • AtomicLongrArray:长整型数组原子类
  • AtomicReferenceArray:用类型数组原子类

3.1 常用API简介

public final int get(int i) //获取 index=i 位置元素的值
public final int getAndSet(int i, int newValue)//返回 index=i 位置的当前的值,并将其设置为新值:newValue
public final int getAndIncrement(int i)//获取 index=i 位置元素的值,并让该位置的元素自增
public final int getAndDecrement(int i) //获取 index=i 位置元素的值,并让该位置的元素自减
public final int getAndAdd(int i, int delta) //获取 index=i 位置元素的值,并加上预期的值
boolean compareAndSet(int i, int expect, int update) //如果输入的数值等于预期值,则以原子方式将 index=i 位置的元素值设置为输入值(update)
public final void lazySet(int i, int newValue)//最终 将index=i 位置的元素设置为newValue,使用 lazySet 设置之后可能导致其他线程在之后的一小段时间内还是可以读到旧的值

3.2 样例Code

package com.bilibili.juc.atomic;

import java.util.concurrent.atomic.AtomicIntegerArray;

public class AtomicIntegerArrayDemo {

    public static void main(String[] args) {
        AtomicIntegerArray atomicIntegerArray = new AtomicIntegerArray(new int[5]);
//        AtomicIntegerArray atomicIntegerArray = new AtomicIntegerArray(5);
//        AtomicIntegerArray atomicIntegerArray = new AtomicIntegerArray(new int[]{1,2,3,4,5});

        for (int i = 0; i < atomicIntegerArray.length(); i++) {
            System.out.println(atomicIntegerArray.get(i));
        }

        int tmpInt = 0;

        tmpInt = atomicIntegerArray.getAndSet(0, 1122);
        System.out.println(tmpInt + "\t" + atomicIntegerArray.get(0));

        tmpInt = atomicIntegerArray.getAndIncrement(0);
        System.out.println(tmpInt + "
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值