滑动窗口
顾名思义就是我们维护一个自定义的窗口,确定什么时候添加元素,什么时候删除元素,在数组上体现为head++和tail++。
给定一个含有 n
个正整数的数组和一个正整数 target
。
找出该数组中满足其总和大于等于 target
的长度最小的
子数组
[numsl, numsl+1, ..., numsr-1, numsr]
,并返回其长度。如果不存在符合条件的子数组,返回 0
。
示例 1:
输入:target = 7, nums = [2,3,1,2,4,3]
输出:2
解释:子数组 [4,3]
是该条件下的长度最小的子数组。
示例 2:
输入:target = 4, nums = [1,4,4] 输出:1
示例 3:
输入:target = 11, nums = [1,1,1,1,1,1,1,1] 输出:0
提示:
1 <= target <= 109
1 <= nums.length <= 105
1 <= nums[i] <= 105
非常典型的题目哈,这里用到的是滑动窗口的方法,滑动窗口保证了我们的算法时间复杂度只有On,非常的快速
稍微讲一下这道题怎么用滑动窗口,定义head和tail,head用来往窗口里面增加元素,tail表示窗口的最后一个元素,用来删除元素。head和tail两个指针每个最多只会移动n次,所以时间复杂度为On。
当窗口里面的元素和小于target时,我们选择head右移,继续添加元素
当窗口元素和大于target时,我们尝试tail右移,判断能否删除元素,并且记录最小的窗口大小。
代码如下:
class Solution {
public int minSubArrayLen(int target, int[] nums) {
int head=0,tail=0;
int ans=Integer.MAX_VALUE;
int count=0;
while(head<nums.length){
count+=nums[head];
head++;
if(count>=target){
while(count-nums[tail]>=target){
count-=nums[tail];
tail++;
}
ans=Math.min(ans,head-tail);
}
}
if(count<target) return 0;
return ans;
}
}
过程模拟
中等
相关标签
相关企业
给你一个正整数 n
,生成一个包含 1
到 n2
所有元素,且元素按顺时针顺序螺旋排列的 n x n
正方形矩阵 matrix
。
示例 1:
输入:n = 3 输出:[[1,2,3],[8,9,4],[7,6,5]]
示例 2:
输入:n = 1 输出:[[1]]
提示:
1 <= n <= 20
这道题目主要是考验边界值的处理,我们模拟这四个方向的遍历
代码如下
class Solution {
public int[][] generateMatrix(int n) {
int l = 0, r = n - 1, t = 0, b = n - 1;
int[][] mat = new int[n][n];
int num = 1, tar = n * n;
while(num <= tar){
for(int i = l; i <= r; i++) mat[t][i] = num++;
t++;
for(int i = t; i <= b; i++) mat[i][r] = num++;
r--;
for(int i = r; i >= l; i--) mat[b][i] = num++;
b--;
for(int i = b; i >= t; i--) mat[i][l] = num++;
l++;
}
return mat;
}
}
主要思路:
初始化一个 n×n 大小的矩阵 mat,然后模拟整个向内环绕的填入过程:
定义当前左右上下边界 l,r,t,b,初始值 num = 1,迭代终止值 tar = n * n;
当 num <= tar 时,始终按照 从左到右 从上到下 从右到左 从下到上 填入顺序循环,每次填入后:
执行 num += 1:得到下一个需要填入的数字;
更新边界:例如从左到右填完后,上边界 t += 1,相当于上边界向内缩 1。
使用num <= tar而不是l < r || t < b作为迭代条件,是为了解决当n为奇数时,矩阵中心数字无法在迭代过程中被填充的问题。
最终返回 mat 即可。
如图所示
前缀和
区间和
题目描述
给定一个整数数组 Array,请计算该数组在每个指定区间内元素的总和。
输入描述
第一行输入为整数数组 Array 的长度 n,接下来 n 行,每行一个整数,表示数组的元素。随后的输入为需要计算总和的区间下标:a,b (b > = a),直至文件结束。
输出描述
输出每个指定区间内元素的总和。
输入示例
5
1
2
3
4
5
0 1
1 3
输出示例
3
9
提示信息
数据范围:
0 < n <= 100000
题解思路:对从0到i计算前缀和,当要求i-j的区间和的时候,即为j处前缀和减去i处前缀和
代码如下
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int[] vec = new int[n];
int[] p = new int[n];
int presum = 0;
for (int i = 0; i < n; i++) {
vec[i] = scanner.nextInt();
presum += vec[i];
p[i] = presum;
}
while (scanner.hasNextInt()) {
int a = scanner.nextInt();
int b = scanner.nextInt();
int sum;
if (a == 0) {
sum = p[b];
} else {
sum = p[b] - p[a - 1];
}
System.out.println(sum);
}
scanner.close();
}
}
开发商购买土地
题目描述
在一个城市区域内,被划分成了n * m个连续的区块,每个区块都拥有不同的权值,代表着其土地价值。目前,有两家开发公司,A 公司和 B 公司,希望购买这个城市区域的土地。
现在,需要将这个城市区域的所有区块分配给 A 公司和 B 公司。
然而,由于城市规划的限制,只允许将区域按横向或纵向划分成两个子区域,而且每个子区域都必须包含一个或多个区块。 为了确保公平竞争,你需要找到一种分配方式,使得 A 公司和 B 公司各自的子区域内的土地总价值之差最小。
注意:区块不可再分。
输入描述
第一行输入两个正整数,代表 n 和 m。
接下来的 n 行,每行输出 m 个正整数。
输出描述
请输出一个整数,代表两个子区域内土地总价值之间的最小差距。
输入示例
3 3
1 2 3
2 1 3
1 2 3
输出示例
0
提示信息
如果将区域按照如下方式划分:
1 2 | 3
2 1 | 3
1 2 | 3
两个子区域内土地总价值之间的最小差距可以达到 0。
数据范围:
1 <= n, m <= 100;
n 和 m 不同时为 1。
思路:这道题目也是选择用前缀和的方式,分别对行和列求前缀和,后期再遍历行和列,找出差值最小的答案。
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int m = scanner.nextInt();
int sum = 0;
int[][] vec = new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
vec[i][j] = scanner.nextInt();
sum += vec[i][j];
}
}
// 统计横向
int[] horizontal = new int[n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
horizontal[i] += vec[i][j];
}
}
// 统计纵向
int[] vertical = new int[m];
for (int j = 0; j < m; j++) {
for (int i = 0; i < n; i++) {
vertical[j] += vec[i][j];
}
}
int result = Integer.MAX_VALUE;
int horizontalCut = 0;
for (int i = 0; i < n; i++) {
horizontalCut += horizontal[i];
result = Math.min(result, Math.abs(sum - 2 * horizontalCut));
}
int verticalCut = 0;
for (int j = 0; j < m; j++) {
verticalCut += vertical[j];
result = Math.min(result, Math.abs(sum - 2 * verticalCut));
}
System.out.println(result);
scanner.close();
}
}