基于EfficientNetV2的动物识别

前言

前面提到AlexNet应用到具体任务如Oxford-IIIT Pets数据集的分类问题时,存在一些弊端。如:

  • 过拟合:虽然AlexNet引入了Dropout等技术以减少过拟合,但由于其网络结构较大,模型参数众多,若训练数据不足够丰富或者多样,仍然容易发生过拟合。Oxford-IIIT Pets数据集相对较小,这可能导致模型在训练集上表现良好,但在实际应用或新的测试数据上表现不佳。
  • 参数数量和计算资源:AlexNet有超过6000万的参数和多个卷积层,这需要较高的计算资源和存储空间。对于Oxford-IIIT Pets这样的相对较小的数据集,使用如此庞大的网络可能不是最高效的选择。
  • 特征提取的局限性:AlexNet的网络架构主要是针对较大、较复杂的图像数据集(如ImageNet)设计的。它可能不完全适合处理具有高度相似性特征的小型数据集,比如宠物品种,其中许多品种的区分特征较细微,而AlexNet可能不足以捕捉这些细微的差异。
  • 泛化能力:由于AlexNet在设计时主要考虑的是通用性而非特定任务的优化,它可能在面对特定种类的图像(如各种宠物的特定品种)时,泛化能力不足。

接下来介绍一种更小的模型,且能达到更快的训练速度,EfficientNetV2。

EfficientNetV2介绍

在这里插入图片描述

论文原文

简要介绍:

《EfficientNetV2:更小的模型和更快的训练》,作者是 Mingxing Tan 和 Quoc V. Le,发表于 2021 年。文章介绍了 EfficientNetV2,这是一个新的卷积网络家族,相比以前的模型具有更快的训练速度和更好的参数效率。通过结合训练感知的神经架构搜索和缩放技术,这些模型在训练速度和参数效率上进行了联合优化。模型在新的操作,如 Fused-MBConv 的丰富搜索空间中搜索得到。实验表明,EfficientNetV2 模型的训练速度比最先进的模型快很多,同时参数数量减少了多达 6.8 倍。

论文还提出了一种改进的渐进式学习方法,通过在训练过程中逐步增加图像大小来加速训练,但这通常会导致准确率下降。为了弥补这种准确率的下降,他们提出通过适应性调整正则化(例如,数据增强)来补偿。利用这种渐进式学习,EfficientNetV2 在 ImageNet 和 CIFAR/Cars/Flowers 数据集上显著超过了以前的模型。通过在相同的 ImageNet21k 上进行预训练,EfficientNetV2 在 ImageNet ILSVRC2012 上达到了 87.3% 的顶级准确率,比最近的 ViT 提高了 2.0% 的准确率,同时训练速度提高了 5 倍至 11 倍。

这篇论文的主要贡献包括引入了一个新的更小、更快的模型家族;提出了一种改进的渐进式学习方法,该方法适应性地调整正则化和图像大小;在 ImageNet、CIFAR、Cars 和 Flowers 数据集上显示了高达 11 倍的训练速度和高达 6.8 倍的参数效率优势。​

这项工作的主要贡献:

  • 更小更快的模型:
    EfficientNetV2 通过使用训练感知的神经架构搜索 (NAS) 和先进的模型缩放技术,创建了一系列新的卷积网络,这些网络在参数效率和训练速度方面都优于以前的模型。
  • 改进的渐进式学习方法:
    为了应对在训练过程中逐步增加图像尺寸所带来的准确率下降问题,EfficientNetV2 提出了一种改进的渐进式学习方法。这种方法不仅动态调整图像大小,还适应性地调整正则化策略,如数据增强和 Dropout,从而有效提高了模型的训练速度和准确率。
  • 实验结果的显著提升:
    在多个标准数据集上,包括 ImageNet、CIFAR-10、CIFAR-100、Cars 和 Flowers 数据集,EfficientNetV2 显著超过了以前的模型。特别是在 ImageNet 上,EfficientNetV2 达到了比之前模型更高的顶尖准确率,同时在使用相同计算资源的情况下训练速度快 5 倍至 11 倍。
  • 参数和计算效率的显著改进:
    通过精心设计的模型结构和缩放规则,EfficientNetV2 在保持高准确率的同时,大幅减少了模型参数的数量和计算复杂性。这使得模型在现代的硬件上运行更高效,同时也更适合部署到资源受限的设备上。

EfficientNetV2的网络架构:

模型的架构特点:

  • 使用 Fused-MBConv:为了改进卷积层的使用效率和训练速度,EfficientNetV2 引入了 Fused-MBConv 操作。这种操作结合了深度可分离卷积和扩展卷积,用单一的常规卷积替代它们,特别是在网络的早期阶段。
  • 渐进式图像大小调整:EfficientNetV2 在训练过程中采用渐进式的方法逐步增加输入图像的大小,从而加速训练过程并尽量减少准确度损失。这种方法结合了动态调整的正则化策略,比如数据增强和 Dropout,以适应不同大小的图像。
  • 网络架构搜索 (NAS) 和缩放:通过使用训练感知的网络架构搜索和模型缩放技术,EfficientNetV2 能够在训练速度和参数效率之间找到最佳平衡。

架构示例:

StageOperationKernelStrideChannelsLayers
0Conv3x33x32241
1Fused-MBConv13x31242
2Fused-MBConv43x32484
3Fused-MBConv43x32644
4MBConv43x321286
5MBConv63x311609
6MBConv63x3225615
7Conv1x1 & Pooling & FCN/AN/A12801

与AlexNet的区别

  • 参数效率和模型大小:
    EfficientNetV2:利用先进的缩放技术和网络架构搜索,EfficientNetV2 极大地提高了参数效率,使用的参数远少于 AlexNet。这使得模型更小,更适合在资源受限的环境中部署。
    AlexNet:虽然在当时是一个划时代的模型,但其参数效率较低,模型较大,需要较多的计算资源。
  • 训练和推理速度:
    EfficientNetV2:通过渐进式图像大小调整和其他优化措施,显著提升了训练速度。此外,其结构也优化了推理速度,使得在相同的硬件上运行更快。
    AlexNet:相对较慢的训练和推理速度,尤其在现代的硬件设备上相比新型网络架构表现不足。
  • 准确性和泛化能力:
    EfficientNetV2:通过在大规模数据集上的预训练和先进的训练技术,比如渐进式学习和自适应正则化,EfficientNetV2 在图像识别任务上通常能达到更高的准确率。
    AlexNet:虽然在其引入时表现出色,但在处理更复杂或多样化的图像识别任务时,尤其是在现代深度学习任务中,可能不如新型架构。
  • 应对过拟合的能力:
    EfficientNetV2:采用了多种机制(例如,数据增强、Dropout 等)来应对过拟合,提高模型在未见数据上的泛化能力。
    AlexNet:尽管使用了ReLU、Dropout和局部响应归一化等技术,但相比之下,其应对过拟合的能力较弱。
  • 技术进步和创新:
    EfficientNetV2:集成了多项最新技术,如基于 NAS 的结构搜索、复合缩放规则以及渐进式图像大小调整。
    AlexNet:作为深度学习早期的突破,主要使用了当时较为基础的卷积网络结构,没有包含后来出现的许多优化和创新。

数据集介绍:

参考前一篇基于Alex Net的动物识别算法

代码实现:

网络模型的实现:

  • DropPath: 一个模块,用于实现随机深度(Stochastic Depth),通过随机丢弃路径来正则化网络。

  • ConvBNAct: 一个卷积块模块,包含卷积层、批量归一化层和激活层。

  • SqueezeExcite: 实现了Squeeze-and-Excitation(SE)模块,用于增强特征表示的通道注意力机制。

  • MBConv: 基于MobileNetV2的改进模块,包含扩展卷积、深度可分离卷积和Squeeze-and-Excitation模块。

  • FusedMBConv: MBConv的融合版本,将扩展卷积和线性投影卷积融合为一个卷积操作,以提高效率。

  • EfficientNetV2: 整个EfficientNetV2模型的主体,由一个stem卷积层、多个MBConv或FusedMBConv块组成的序列,以及一个分类头部(包含全连接层)组成。

  • efficientnetv2_s, efficientnetv2_m, efficientnetv2_l: 分别用于初始化不同大小(小、中、大)的EfficientNetV2模型的函数。

from collections import OrderedDict
from functools import partial
from typing import Callable, Optional

import torch.nn as nn
import torch
from torch import Tensor


def drop_path(x, drop_prob: float = 0., training: bool = False):
    """
    Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
    "Deep Networks with Stochastic Depth", https://arxiv.org/pdf/1603.09382.pdf

    This function is taken from the rwightman.
    It can be seen here:
    https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py#L140
    """
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


class DropPath(nn.Module):
    """
    Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    "Deep Networks with Stochastic Depth", https://arxiv.org/pdf/1603.09382.pdf
    """
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)


class ConvBNAct(nn.Module):
    def __init__(self,
                 in_planes: int,
                 out_planes: int,
                 kernel_size: int = 3,
                 stride: int = 1,
                 groups: int = 1,
                 norm_layer: Optional[Callable[..., nn.Module]] = None,
                 activation_layer: Optional[Callable[..., nn.Module]] = None):
        super(ConvBNAct, self).__init__()

        padding = (kernel_size - 1) // 2
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        if activation_layer is None:
            activation_layer = nn.SiLU  # alias Swish  (torch>=1.7)

        self.conv = nn.Conv2d(in_channels=in_planes,
                              out_channels=out_planes,
                              kernel_size=kernel_size,
                              stride=stride,
                              padding=padding,
                              groups=groups,
                              bias=False)

        self.bn = norm_layer(out_planes)
        self.act = activation_layer()

    def forward(self, x):
        result = self.conv(x)
        result = self.bn(result)
        result = self.act(result)

        return result


class SqueezeExcite(nn.Module):
    def __init__(self,
                 input_c: int,   # block input channel
                 expand_c: int,  # block expand channel
                 se_ratio: float = 0.25):
        super(SqueezeExcite, self).__init__()
        squeeze_c = int(input_c * se_ratio)
        self.conv_reduce = nn.Conv2d(expand_c, squeeze_c, 1)
        self.act1 = nn.SiLU()  # alias Swish
        self.conv_expand = nn.Conv2d(squeeze_c, expand_c, 1)
        self.act2 = nn.Sigmoid()

    def forward(self, x: Tensor) -> Tensor:
        scale = x.mean((2, 3), keepdim=True)
        scale = self.conv_reduce(scale)
        scale = self.act1(scale)
        scale = self.conv_expand(scale)
        scale = self.act2(scale)
        return scale * x


class MBConv(nn.Module):
    def __init__(self,
                 kernel_size: int,
                 input_c: int,
                 out_c: int,
                 expand_ratio: int,
                 stride: int,
                 se_ratio: float,
                 drop_rate: float,
                 norm_layer: Callable[..., nn.Module]):
        super(MBConv, self).__init__()

        if stride not in [1, 2]:
            raise ValueError("illegal stride value.")

        self.has_shortcut = (stride == 1 and input_c == out_c)

        activation_layer = nn.SiLU  # alias Swish
        expanded_c = input_c * expand_ratio

        # 在EfficientNetV2中,MBConv中不存在expansion=1的情况所以conv_pw肯定存在
        assert expand_ratio != 1
        # Point-wise expansion
        self.expand_conv = ConvBNAct(input_c,
                                     expanded_c,
                                     kernel_size=1,
                                     norm_layer=norm_layer,
                                     activation_layer=activation_layer)

        # Depth-wise convolution
        self.dwconv = ConvBNAct(expanded_c,
                                expanded_c,
                                kernel_size=kernel_size,
                                stride=stride,
                                groups=expanded_c,
                                norm_layer=norm_layer,
                                activation_layer=activation_layer)

        self.se = SqueezeExcite(input_c, expanded_c, se_ratio) if se_ratio > 0 else nn.Identity()

        # Point-wise linear projection
        self.project_conv = ConvBNAct(expanded_c,
                                      out_planes=out_c,
                                      kernel_size=1,
                                      norm_layer=norm_layer,
                                      activation_layer=nn.Identity)  # 注意这里没有激活函数,所有传入Identity

        self.out_channels = out_c

        # 只有在使用shortcut连接时才使用dropout层
        self.drop_rate = drop_rate
        if self.has_shortcut and drop_rate > 0:
            self.dropout = DropPath(drop_rate)

    def forward(self, x: Tensor) -> Tensor:
        result = self.expand_conv(x)
        result = self.dwconv(result)
        result = self.se(result)
        result = self.project_conv(result)

        if self.has_shortcut:
            if self.drop_rate > 0:
                result = self.dropout(result)
            result += x

        return result


class FusedMBConv(nn.Module):
    def __init__(self,
                 kernel_size: int,
                 input_c: int,
                 out_c: int,
                 expand_ratio: int,
                 stride: int,
                 se_ratio: float,
                 drop_rate: float,
                 norm_layer: Callable[..., nn.Module]):
        super(FusedMBConv, self).__init__()

        assert stride in [1, 2]
        assert se_ratio == 0

        self.has_shortcut = stride == 1 and input_c == out_c
        self.drop_rate = drop_rate

        self.has_expansion = expand_ratio != 1

        activation_layer = nn.SiLU  # alias Swish
        expanded_c = input_c * expand_ratio

        # 只有当expand ratio不等于1时才有expand conv
        if self.has_expansion:
            # Expansion convolution
            self.expand_conv = ConvBNAct(input_c,
                                         expanded_c,
                                         kernel_size=kernel_size,
                                         stride=stride,
                                         norm_layer=norm_layer,
                                         activation_layer=activation_layer)

            self.project_conv = ConvBNAct(expanded_c,
                                          out_c,
                                          kernel_size=1,
                                          norm_layer=norm_layer,
                                          activation_layer=nn.Identity)  # 注意没有激活函数
        else:
            # 当只有project_conv时的情况
            self.project_conv = ConvBNAct(input_c,
                                          out_c,
                                          kernel_size=kernel_size,
                                          stride=stride,
                                          norm_layer=norm_layer,
                                          activation_layer=activation_layer)  # 注意有激活函数

        self.out_channels = out_c

        # 只有在使用shortcut连接时才使用dropout层
        self.drop_rate = drop_rate
        if self.has_shortcut and drop_rate > 0:
            self.dropout = DropPath(drop_rate)

    def forward(self, x: Tensor) -> Tensor:
        if self.has_expansion:
            result = self.expand_conv(x)
            result = self.project_conv(result)
        else:
            result = self.project_conv(x)

        if self.has_shortcut:
            if self.drop_rate > 0:
                result = self.dropout(result)

            result += x

        return result


class EfficientNetV2(nn.Module):
    def __init__(self,
                 model_cnf: list,
                 num_classes: int = 1000,
                 num_features: int = 1280,
                 dropout_rate: float = 0.2,
                 drop_connect_rate: float = 0.2):
        super(EfficientNetV2, self).__init__()

        for cnf in model_cnf:
            assert len(cnf) == 8

        norm_layer = partial(nn.BatchNorm2d, eps=1e-3, momentum=0.1)

        stem_filter_num = model_cnf[0][4]

        self.stem = ConvBNAct(3,
                              stem_filter_num,
                              kernel_size=3,
                              stride=2,
                              norm_layer=norm_layer)  # 激活函数默认是SiLU

        total_blocks = sum([i[0] for i in model_cnf])
        block_id = 0
        blocks = []
        for cnf in model_cnf:
            repeats = cnf[0]
            op = FusedMBConv if cnf[-2] == 0 else MBConv
            for i in range(repeats):
                blocks.append(op(kernel_size=cnf[1],
                                 input_c=cnf[4] if i == 0 else cnf[5],
                                 out_c=cnf[5],
                                 expand_ratio=cnf[3],
                                 stride=cnf[2] if i == 0 else 1,
                                 se_ratio=cnf[-1],
                                 drop_rate=drop_connect_rate * block_id / total_blocks,
                                 norm_layer=norm_layer))
                block_id += 1
        self.blocks = nn.Sequential(*blocks)

        head_input_c = model_cnf[-1][-3]
        head = OrderedDict()

        head.update({"project_conv": ConvBNAct(head_input_c,
                                               num_features,
                                               kernel_size=1,
                                               norm_layer=norm_layer)})  # 激活函数默认是SiLU

        head.update({"avgpool": nn.AdaptiveAvgPool2d(1)})
        head.update({"flatten": nn.Flatten()})

        if dropout_rate > 0:
            head.update({"dropout": nn.Dropout(p=dropout_rate, inplace=True)})
        head.update({"classifier": nn.Linear(num_features, num_classes)})

        self.head = nn.Sequential(head)

        # initial weights
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out")
                if m.bias is not None:
                    nn.init.zeros_(m.bias)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.ones_(m.weight)
                nn.init.zeros_(m.bias)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.zeros_(m.bias)

    def forward(self, x: Tensor) -> Tensor:
        x = self.stem(x)
        x = self.blocks(x)
        x = self.head(x)

        return x


def efficientnetv2_s(num_classes: int = 1000):
    """
    EfficientNetV2
    https://arxiv.org/abs/2104.00298
    """
    # train_size: 300, eval_size: 384

    # repeat, kernel, stride, expansion, in_c, out_c, operator, se_ratio
    model_config = [[2, 3, 1, 1, 24, 24, 0, 0],
                    [4, 3, 2, 4, 24, 48, 0, 0],
                    [4, 3, 2, 4, 48, 64, 0, 0],
                    [6, 3, 2, 4, 64, 128, 1, 0.25],
                    [9, 3, 1, 6, 128, 160, 1, 0.25],
                    [15, 3, 2, 6, 160, 256, 1, 0.25]]

    model = EfficientNetV2(model_cnf=model_config,
                           num_classes=num_classes,
                           dropout_rate=0.2)
    return model


def efficientnetv2_m(num_classes: int = 1000):
    """
    EfficientNetV2
    https://arxiv.org/abs/2104.00298
    """
    # train_size: 384, eval_size: 480

    # repeat, kernel, stride, expansion, in_c, out_c, operator, se_ratio
    model_config = [[3, 3, 1, 1, 24, 24, 0, 0],
                    [5, 3, 2, 4, 24, 48, 0, 0],
                    [5, 3, 2, 4, 48, 80, 0, 0],
                    [7, 3, 2, 4, 80, 160, 1, 0.25],
                    [14, 3, 1, 6, 160, 176, 1, 0.25],
                    [18, 3, 2, 6, 176, 304, 1, 0.25],
                    [5, 3, 1, 6, 304, 512, 1, 0.25]]

    model = EfficientNetV2(model_cnf=model_config,
                           num_classes=num_classes,
                           dropout_rate=0.3)
    return model


def efficientnetv2_l(num_classes: int = 1000):
    """
    EfficientNetV2
    https://arxiv.org/abs/2104.00298
    """
    # train_size: 384, eval_size: 480

    # repeat, kernel, stride, expansion, in_c, out_c, operator, se_ratio
    model_config = [[4, 3, 1, 1, 32, 32, 0, 0],
                    [7, 3, 2, 4, 32, 64, 0, 0],
                    [7, 3, 2, 4, 64, 96, 0, 0],
                    [10, 3, 2, 4, 96, 192, 1, 0.25],
                    [19, 3, 1, 6, 192, 224, 1, 0.25],
                    [25, 3, 2, 6, 224, 384, 1, 0.25],
                    [7, 3, 1, 6, 384, 640, 1, 0.25]]

    model = EfficientNetV2(model_cnf=model_config,
                           num_classes=num_classes,
                           dropout_rate=0.4)
    return model

创建一个class_indices.json文件:
这个文件用于存储类别名称与索引之间的映射关系。在图像分类任务中,这个文件可以帮助将模型输出的索引转换为对应的类别名称,或者在数据预处理时根据类别索引来选择或处理数据。

{
    "0": "Abyssinian",
    "1": "Bengal",
    "2": "Birman",
    "3": "Bombay",
    "4": "British",
    "5": "Egyptian",
    "6": "Maine",
    "7": "Persian",
    "8": "Ragdoll",
    "9": "Russian",
    "10": "Siamese",
    "11": "Sphynx",
    "12": "american",
    "13": "american_pit_bull_terrie",
    "14": "basset",
    "15": "beagle",
    "16": "boxer",
    "17": "chihuahua",
    "18": "english",
    "19": "english_setter",
    "20": "german",
    "21": "great",
    "22": "havanese",
    "23": "japanese",
    "24": "keeshond",
    "25": "leonberger",
    "26": "miniature",
    "27": "newfoundland",
    "28": "pomeranian",
    "29": "pug",
    "30": "saint",
    "31": "samoyed",
    "32": "scottish",
    "33": "shiba",
    "34": "staffordshire",
    "35": "wheaten",
    "36": "yorkshire"
}

接着来实现训练代码:
反正是常规操作,直接上代码。最后可视化训练过程。

import os
import math
import argparse

import torch
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
import torch.optim.lr_scheduler as lr_scheduler

from model import efficientnetv2_s as create_model
from my_dataset import MyDataSet
from utils import read_split_data, train_one_epoch, evaluate
import os
os.environ["CUDA_VISIBLE_DEVICES"] = '0'

import matplotlib.pyplot as plt




def main(args):
#     定义两个列表来存储损失和准确率
    train_losses, val_losses, train_accs, val_accs = [], [], [], []

    device = torch.device(args.device if torch.cuda.is_available() else "cpu")
    print("Using device:", device)

    print(args)
    print('Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/')
    tb_writer = SummaryWriter()
    if os.path.exists("./weights") is False:
        os.makedirs("./weights")

    train_images_path, train_images_label, val_images_path, val_images_label = read_split_data(args.data_path)

    img_size = {"s": [300, 384],  # train_size, val_size
                "m": [384, 480],
                "l": [384, 480]}
    num_model = "s"

    data_transform = {
        "train": transforms.Compose([transforms.RandomResizedCrop(img_size[num_model][0]),
                                     transforms.RandomHorizontalFlip(),
                                     transforms.ToTensor(),
                                     transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
        "val": transforms.Compose([transforms.Resize(img_size[num_model][1]),
                                   transforms.CenterCrop(img_size[num_model][1]),
                                   transforms.ToTensor(),
                                   transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])}

    # 实例化训练数据集
    train_dataset = MyDataSet(images_path=train_images_path,
                              images_class=train_images_label,
                              transform=data_transform["train"])

    # 实例化验证数据集
    val_dataset = MyDataSet(images_path=val_images_path,
                            images_class=val_images_label,
                            transform=data_transform["val"])

    batch_size = args.batch_size
    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # number of workers
    print('Using {} dataloader workers every process'.format(nw))
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=batch_size,
                                               shuffle=True,
                                               pin_memory=True,
                                               num_workers=nw,
                                               collate_fn=train_dataset.collate_fn)

    val_loader = torch.utils.data.DataLoader(val_dataset,
                                             batch_size=batch_size,
                                             shuffle=False,
                                             pin_memory=True,
                                             num_workers=nw,
                                             collate_fn=val_dataset.collate_fn)

    # 如果存在预训练权重则载入
    model = create_model(num_classes=args.num_classes).to(device)
    if args.weights != "":
        if os.path.exists(args.weights):
            weights_dict = torch.load(args.weights, map_location=device)
            load_weights_dict = {k: v for k, v in weights_dict.items()
                                 if model.state_dict()[k].numel() == v.numel()}
            print(model.load_state_dict(load_weights_dict, strict=False))
        else:
            raise FileNotFoundError("not found weights file: {}".format(args.weights))

    # 是否冻结权重
    if args.freeze_layers:
        for name, para in model.named_parameters():
            # 除head外,其他权重全部冻结
            if "head" not in name:
                para.requires_grad_(False)
            else:
                print("training {}".format(name))

    pg = [p for p in model.parameters() if p.requires_grad]
    optimizer = optim.SGD(pg, lr=args.lr, momentum=0.9, weight_decay=1E-4)
    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    lf = lambda x: ((1 + math.cos(x * math.pi / args.epochs)) / 2) * (1 - args.lrf) + args.lrf  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)

    for epoch in range(args.epochs):
        # train
        train_loss, train_acc = train_one_epoch(model=model,
                                                optimizer=optimizer,
                                                data_loader=train_loader,
                                                device=device,
                                                epoch=epoch)

        scheduler.step()

        # validate
        val_loss, val_acc = evaluate(model=model,
                                     data_loader=val_loader,
                                     device=device,
                                     epoch=epoch)
            # 保存损失和准确率
        train_losses.append(train_loss)
        val_losses.append(val_loss)
        train_accs.append(train_acc)
        val_accs.append(val_acc)

        tags = ["train_loss", "train_acc", "val_loss", "val_acc", "learning_rate"]
        tb_writer.add_scalar(tags[0], train_loss, epoch)
        tb_writer.add_scalar(tags[1], train_acc, epoch)
        tb_writer.add_scalar(tags[2], val_loss, epoch)
        tb_writer.add_scalar(tags[3], val_acc, epoch)
        tb_writer.add_scalar(tags[4], optimizer.param_groups[0]["lr"], epoch)

        torch.save(model.state_dict(), "./weights/model-{}.pth".format(epoch))
        # 在训练循环结束后绘制损失和准确率图
        plt.figure(figsize=(12, 6))

        plt.subplot(1, 2, 1)
        plt.plot(train_losses, label='Train Loss')
        plt.plot(val_losses, label='Validation Loss')
        plt.title('Loss Over Epochs')
        plt.xlabel('Epoch')
        plt.ylabel('Loss')
        plt.legend()

        plt.subplot(1, 2, 2)
        plt.plot(train_accs, label='Train Accuracy')
        plt.plot(val_accs, label='Validation Accuracy')
        plt.title('Accuracy Over Epochs')
        plt.xlabel('Epoch')
        plt.ylabel('Accuracy')
        plt.legend()

        # 保存图像到本地
        plt.savefig('./training_progress.png')
        plt.close()

        print('Training progress plot saved to ./training_progress.png')


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--num_classes', type=int, default=37)
    parser.add_argument('--epochs', type=int, default=100)
    parser.add_argument('--batch-size', type=int, default=64)
    parser.add_argument('--lr', type=float, default=0.01)
    parser.add_argument('--lrf', type=float, default=0.01)

    # 数据集所在根目录
    # https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz
    parser.add_argument('--data-path', type=str,
                        default="./datasets/images")

    # download model weights
    # 链接: https://pan.baidu.com/s/1uZX36rvrfEss-JGj4yfzbQ  密码: 5gu1
    parser.add_argument('--weights', type=str, default='./pre_efficientnetv2-s.pth',
                        help='initial weights path')
    parser.add_argument('--freeze-layers', type=bool, default=True)
    parser.add_argument('--device', default='cuda:0', help='device id (i.e. 0 or 0,1 or cpu)')

    opt = parser.parse_args()

    main(opt)

在这里插入图片描述
推理代码实现:
模型训练好好,我们可以选择一些新的图片,让模型进行预测。

import os
import json
import torch
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt
import matplotlib
from model import efficientnetv2_s as create_model
# 设置Matplotlib的默认字体为支持中文的字体,这里使用黑体
matplotlib.rcParams['font.family'] = 'SimHei'
matplotlib.rcParams['axes.unicode_minus'] = False

def load_model(device, model_path, num_classes=37):
    model = create_model(num_classes=num_classes).to(device)
    model.load_state_dict(torch.load(model_path, map_location=device))
    model.eval()
    return model

def load_class_indices(json_path):
    with open(json_path, "r") as f:
        class_indict = json.load(f)
    return class_indict

def predict_image(model, img_path, data_transform, device, class_indict):
    # 加载并转换图像
    img = Image.open(img_path)
    img_transformed = data_transform(img)
    img_transformed = torch.unsqueeze(img_transformed, dim=0)

    # 进行预测
    with torch.no_grad():
        output = torch.squeeze(model(img_transformed.to(device))).cpu()
        predict = torch.softmax(output, dim=0)
        predict_cla = torch.argmax(predict).numpy()

    # 打印预测结果
    print_res = "图片: {} - 类别: {} - 概率: {:.3}".format(
        os.path.basename(img_path), class_indict[str(predict_cla)], predict[predict_cla].numpy())
    print(print_res)

    # 显示图像及标题
    plt.figure(figsize=(5, 5))
    plt.imshow(img)
    plt.title(f"{class_indict[str(predict_cla)]} - prob: {predict[predict_cla].numpy():.3f}")
    plt.show()

def main():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    img_size = {"s": [300, 384],  # 训练尺寸,验证尺寸
                "m": [384, 480],
                "l": [384, 480]}
    num_model = "s"

    data_transform = transforms.Compose([
        transforms.Resize(img_size[num_model][1]),
        transforms.CenterCrop(img_size[num_model][1]),
        transforms.ToTensor(),
        transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
    ])

    # 加载类别索引
    json_path = './class_indices.json'
    assert os.path.exists(json_path), "文件: '{}' 不存在。".format(json_path)
    class_indict = load_class_indices(json_path)

    # 创建并加载模型
    model = load_model(device, "./weights/model-29.pth", num_classes=37)

    # 要处理的文件夹
    folder_path = "./test_images"
    assert os.path.exists(folder_path), "文件夹 '{}' 不存在。".format(folder_path)

    for img_file in os.listdir(folder_path):
        if img_file.lower().endswith(('.png', '.jpg', '.jpeg', '.gif', '.bmp')):
            img_path = os.path.join(folder_path, img_file)
            predict_image(model, img_path, data_transform, device, class_indict)

if __name__ == '__main__':
    main()

在这里插入图片描述

总结

EfficientNetV2采用了更有效的模型设计和训练策略,以在参数数量相对较少的情况下提高性能。对于动物分类等任务,EfficientNetV2能够通过学习更具有代表性的特征,从而提高分类准确性。
主要是快。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值