You are given one integer number nn. Find three distinct integers a,b,ca,b,c such that 2≤a,b,c2≤a,b,c and a⋅b⋅c=na⋅b⋅c=n or say that it is impossible to do it.
If there are several answers, you can print any.
You have to answer tt independent test cases.
Input
The first line of the input contains one integer tt (1≤t≤1001≤t≤100) — the number of test cases.
The next nn lines describe test cases. The ii-th test case is given on a new line as one integer nn (2≤n≤1092≤n≤109).
Output
For each test case, print the answer on it. Print "NO" if it is impossible to represent nn as a⋅b⋅ca⋅b⋅c for some distinct integers a,b,ca,b,c such that 2≤a,b,c2≤a,b,c.
Otherwise, print "YES" and any possible such representation.
Example
input
Copy
5 64 32 97 2 12345
output
Copy
YES
2 4 8
NO
NO
NO
YES
3 5 823
思路:因为有三个数,如果该数的两个约数都为素数,那么不可能有三个,必定为no。若两个约束里至少有一个不是素数,那么把该数拆分成两个约数,再输出另一个数即可,但是要判断都不相等。
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
typedef long long ll;
ll n,m;
int t;
bool is_prime(ll n)//试除法判断是不是约数
{
if(n==1)return false;
if(n==2)return true;
for(int i=2;i<=n/i;i++)
{
if(n%i==0)
{
return false;
}
}
return true;
}
bool getdive(ll n,ll x)//如果不是素数,那就把这个数拆成两个约数
{
for(int i=2;i<n/i;i++)
{
if(n%i==0&&n/i!=i&&n/i!=x&&i!=x)
{
cout<<"YES"<<endl;
cout<<i<<" "<<n/i<<" ";
return true;
}
}
return false;
}
void get_divisorts(ll n)
//先找到两个约数,然后判断这两个约数一个一个判断是不是素数
for(ll i=1;i<=n/i;i++)
{
if(n%i==0&&n/i!=i)
{
if(!is_prime(i))
{
if(getdive(i,n/i))
{
cout<<n/i<<endl;
return;
}
}
else if(!is_prime(n/i))
{
if(getdive(n/i,i))
{
cout<<i<<endl;
return;
}
}
else
{
cout<<"NO"<<endl;
return ;
}
}
}
cout<<"NO"<<endl;
return ;
}
int main()
{
cin>>t;
while(t--)
{
cin>>m;
get_divisorts(m);}
return 0;
}
寻找整数的三个因子
该博客主要讨论如何为给定的正整数找到三个不同的因子,使得它们的乘积等于原数。如果数的两个因子都是素数,则无法找到三个因子;否则,通过分解素因数并找到不相等的因子组合来实现。文章提供了一个C++程序来解决这个问题,并给出了若干测试用例及其结果。
484

被折叠的 条评论
为什么被折叠?



