数据结构第一课,空间和时间复杂度的计算

本文详细解释了时间复杂度(如O(1),O(n),O(logn),O(m+n),O(m*n))的概念,通过实例说明如何分析代码的时间复杂度,以及空间复杂度的计算。还讨论了最好、最坏和平均时间复杂度的区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. O(1)

首先你必须明确一个概念,O(1) 只是常量级时间复杂度的一种表示方法,并不是指只执行了一行代码。比如这段代码,即便有 3 行,它的时间复杂度也是 O(1),而不是 O(3)

int i = 8; int j = 6; int sum = i + j;

2. 只关注循环执行次数最多的一段代码

int cal(int n)

{

int sum = 0;

 int i = 1;

for (; i <= n; ++i)

{

sum = sum + i;

 }

return sum; }

其中第 2、3 行代码都是常量级的执行时间,与 n 的大小无关,所以对于复杂度并没有影响。循环执行次数最多的是第 4、5 行代码,所以这块代码要重点分析。前面我们也讲过,这两行代码被执行了 n 次,所以总的时间复杂度就是 O(n)。

3. O(logn)、O(nlogn)

i=1;

while (i <= n)

{

i = i * 2;

}

根据我们前面讲的复杂度分析方法,第三行代码是循环执行次数最多的。所以,我们只要能计算出这行代码被执行了多少次,就能知道整段代码的时间复杂度。

从代码中可以看出,变量 i 的值从 1 开始取,每循环一次就乘以 2。当大于 n 时,循环结束。还记得我们高中学过的等比数列吗?实际上,变量 i 的取值就是一个等比数列。如果我把它一个一个列出来,就应该是这个样子的:

相当于2的n次方等于n,通过化解得出log2n

4. O(m+n)、O(m*n)

int cal(int m, int n)

{

int sum_1 = 0;

int i = 1;

for (; i < m; ++i)

{

sum_1 = sum_1 + i; }

int sum_2 = 0;

int j = 1; for (; j < n; ++j)

{

sum_2 = sum_2 + j;

}

return sum_1 + sum_2; }

代码中可以看出,m 和 n 是表示两个数据规模。我们无法事先评估 m 和 n 谁的量级大,所以我们在表示复杂度的时候,就不能简单地利用加法法则,省略掉其中一个。所以,上面代码的时间复杂度就是 O(m+n)。

针对这种情况,原来的加法法则就不正确了,我们需要将加法规则改为:T1(m) + T2(n) = O(f(m) + g(n))。但是乘法法则继续有效:T1(m)*T2(n) = O(f(m) * f(n))。

空间复杂度分析

void print(int n) { int i = 0; //2 int[] a = new int[n]; //3 for (i; i <n; ++i) { a[i] = i * i; } for (i = n-1; i >= 0; --i) { print out a[i] } }

跟时间复杂度分析一样,我们可以看到,第 2 行代码中,我们申请了一个空间存储变量 i,但是它是常量阶的,跟数据规模 n 没有关系,所以我们可以忽略。第 3 行申请了一个大小为 n 的 int 类型数组,除此之外,剩下的代码都没有占用更多的空间,所以整段代码的空间复杂度就是 O(n)。

最好、最坏、平均、均摊时间复杂度

int find(int[] array, int n, int x) { int i = 0; int pos = -1; for (; i < n; ++i) { if (array[i] == x) { pos = i; break; } } return pos; }

这段代码的功能非常简单,就是查找整数x在数组中的位置,找到就直接返回。因为,要查找的变量 x 可能出现在数组的任意位置。如果数组中第一个元素正好是要查找的变量 x,那就不需要继续遍历剩下的 n-1 个数据了,那时间复杂度就是 O(1)。但如果数组中不存在变量 x,那我们就需要把整个数组都遍历一遍,时间复杂度就成了 O(n)。所以,不同的情况下,这段代码的时间复杂度是不一样的。

为了表示代码在不同情况下的不同时间复杂度,我们需要引入三个概念:最好情况时间复杂度、最坏情况时间复杂度和平均情况时间复杂度。

1.最好情况时间复杂度

最好情况时间复杂度就是,在最理想的情况下,执行这段代码的时间复杂度。在最理想的情况下,要查找的变量 x 正好是数组的第一个元素,这个时候对应的时间复杂度就是最好情况时间复杂度。

2.最坏情况时间复杂度
最坏情况时间复杂度就是,在最糟糕的情况下,执行这段代码的时间复杂度。如果数组中没有要查找的变量 x,我们需要把整个数组都遍历一遍才行,所以这种最糟糕情况下对应的时间复杂度就是最坏情况时间复杂度。

3. 平均情况时间复杂度
我们都知道,最好情况时间复杂度和最坏情况时间复杂度对应的都是极端情况下的代码复杂度,发生的概率其实并不大。为了更好地表示平均情况下的复杂度,我们需要引入另一个概念:平均情况时间复杂度,后面我简称为平均时间复杂度。

要查找的变量 x 在数组中的位置,有 n+1 种情况:在数组的 0~n-1 位置中和不在数组中。我们把每种情况下,查找需要遍历的元素个数累加起来,然后再除以 n+1,就可以得到需要遍历的元素个数的平均值,即:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值