Ubuntu环境(自用)

该文提供了在Ubuntu系统上禁用nouveau,安装NVIDIA驱动525-510的步骤,接着介绍了如何通过不同方法安装OpenCV以及其依赖,并详细阐述了安装Anaconda、CUDA、cuDNN和PyTorch(CUDA11.7)的流程,包括环境变量配置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

sudo passwd root

禁用nouveau,然后去软件和更新下载NVIDIA驱动525-510

sudo gedit /etc/modprobe.d/blacklist_nouveau.conf

添加

blacklist nouveau
options nouveau modeset=0
sudo update-initramfs -u

 重启,验证

lsmod | grep nouveau

 


Anaconda(不装也行)

Anaconda | The World's Most Popular Data Science Platform

下载目录终端:bash Anaconda_xx版本号


Opencv

方法一(以前用的):

pip install -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com opencv-python --verbose

pip install -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com opencv-contrib-python --verbose

方法二:

sudo apt update
sudo apt install libopencv-dev python3-opencv

python3 -c "import cv2; print(cv2.__version__)"

方法三(源码,现在用的):

01.安装构建工具和所有的依赖软件包:

sudo apt install build-essential cmake git pkg-config libgtk-3-dev \
    libavcodec-dev libavformat-dev libswscale-dev libv4l-dev \
    libxvidcore-dev libx264-dev libjpeg-dev libpng-dev libtiff-dev \
    gfortran openexr libatlas-base-dev python3-dev python3-numpy \
    libtbb2 libtbb-dev libdc1394-22-dev libopenexr-dev \
    libgstreamer-plugins-base1.0-dev libgstreamer1.0-dev

02.克隆所有的OpenCV 和 OpenCV contrib 源:

mkdir ~/opencv_build && cd ~/opencv_build
git clone https://github.com/opencv/opencv.git
git clone https://github.com/opencv/opencv_contrib.git

如果想安装更旧版本的 OpenCV, cd 到 opencvopencv_contrib目录,并且运行git checkout <opencv-version>

03.一旦下载完成,创建一个临时构建目录,并且切换到这个目录:

cd ~/opencv_build/opencv
mkdir -p build && cd build

使用 CMake 命令配置 OpenCV 构建:

cmake -D CMAKE_BUILD_TYPE=RELEASE \
    -D CMAKE_INSTALL_PREFIX=/usr/local \
    -D INSTALL_C_EXAMPLES=ON \
    -D INSTALL_PYTHON_EXAMPLES=ON \
    -D OPENCV_GENERATE_PKGCONFIG=ON \
    -D OPENCV_EXTRA_MODULES_PATH=~/opencv_build/opencv_contrib/modules \
    -D BUILD_EXAMPLES=ON ..

输出将会如下:

-- Configuring done
-- Generating done
-- Build files have been written to: /home/vagrant/opencv_build/opencv/build

04.开始编译过程:

make -j8

根据你的处理器修改-f值。如果你不知道你的处理器核心数,你可以输入nproc找到。

编译将会花费几分钟,或者更多,这依赖于你的系统配置。

05.安装 OpenCV:

sudo make install

06.验证安装结果,输入下面的命令,那你将会看到 OpenCV 版本:

C++ bindings:

pkg-config --modversion opencv4

输出:

4.6.0

Python bindings:

python3 -c "import cv2; print(cv2.__version__)"

输出:

4.6.0-dev

Numpy

pip install -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com numpy

CUDA

sudo apt-get install freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libgl1-mesa-glx libglu1-mesa libglu1-mesa-dev
sudo sh cuda_11.7.0_515.43.04_linux.run

Do you accept the previously read EULA?
accept/decline/quit: accept

Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 410.48?
(y)es/(n)o/(q)uit: no

Install the CUDA 10.0 Toolkit?
(y)es/(n)o/(q)uit: yes

Enter Toolkit Location
 [ default is /usr/local/cuda-10.0 ]:

Do you want to install a symbolic link at /usr/local/cuda?
(y)es/(n)o/(q)uit: yes

Install the CUDA 10.0 Samples?
(y)es/(n)o/(q)uit: yes

等到安装结束即可.

配置环境变量:

sudo gedit ~/.bashrc

末尾加上:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64
export PATH=$PATH:/usr/local/cuda/bin
export CUDA_HOME=$CUDA_HOME:/usr/local/cuda

 保存

source ~/.bashrc
nvcc -V

cuDNN

sudo dpkg -i libcudnn8_8.0.5.39-1+cuda11.1_amd64.deb
sudo dpkg -i libcudnn8-dev_8.0.5.39-1+cuda11.1_amd64.deb
sudo dpkg -i libcudnn8-samples_8.0.5.39-1+cuda11.1_amd64.deb

Pytorch(cuda11.7)

PyTorch
 

conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值