sudo passwd root
禁用nouveau,然后去软件和更新下载NVIDIA驱动525-510
sudo gedit /etc/modprobe.d/blacklist_nouveau.conf
添加
blacklist nouveau
options nouveau modeset=0
sudo update-initramfs -u
重启,验证
lsmod | grep nouveau
Anaconda(不装也行)
Anaconda | The World's Most Popular Data Science Platform
下载目录终端:bash Anaconda_xx版本号
Opencv
方法一(以前用的):
pip install -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com opencv-python --verbose
pip install -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com opencv-contrib-python --verbose
方法二:
sudo apt update
sudo apt install libopencv-dev python3-opencv
python3 -c "import cv2; print(cv2.__version__)"
方法三(源码,现在用的):
01.安装构建工具和所有的依赖软件包:
sudo apt install build-essential cmake git pkg-config libgtk-3-dev \
libavcodec-dev libavformat-dev libswscale-dev libv4l-dev \
libxvidcore-dev libx264-dev libjpeg-dev libpng-dev libtiff-dev \
gfortran openexr libatlas-base-dev python3-dev python3-numpy \
libtbb2 libtbb-dev libdc1394-22-dev libopenexr-dev \
libgstreamer-plugins-base1.0-dev libgstreamer1.0-dev
02.克隆所有的OpenCV 和 OpenCV contrib 源:
mkdir ~/opencv_build && cd ~/opencv_build
git clone https://github.com/opencv/opencv.git
git clone https://github.com/opencv/opencv_contrib.git
如果想安装更旧版本的 OpenCV, cd 到 opencv
和opencv_contrib
目录,并且运行git checkout <opencv-version>
。
03.一旦下载完成,创建一个临时构建目录,并且切换到这个目录:
cd ~/opencv_build/opencv
mkdir -p build && cd build
使用 CMake 命令配置 OpenCV 构建:
cmake -D CMAKE_BUILD_TYPE=RELEASE \
-D CMAKE_INSTALL_PREFIX=/usr/local \
-D INSTALL_C_EXAMPLES=ON \
-D INSTALL_PYTHON_EXAMPLES=ON \
-D OPENCV_GENERATE_PKGCONFIG=ON \
-D OPENCV_EXTRA_MODULES_PATH=~/opencv_build/opencv_contrib/modules \
-D BUILD_EXAMPLES=ON ..
输出将会如下:
-- Configuring done
-- Generating done
-- Build files have been written to: /home/vagrant/opencv_build/opencv/build
04.开始编译过程:
make -j8
根据你的处理器修改-f
值。如果你不知道你的处理器核心数,你可以输入nproc
找到。
编译将会花费几分钟,或者更多,这依赖于你的系统配置。
05.安装 OpenCV:
sudo make install
06.验证安装结果,输入下面的命令,那你将会看到 OpenCV 版本:
C++ bindings:
pkg-config --modversion opencv4
输出:
4.6.0
Python bindings:
python3 -c "import cv2; print(cv2.__version__)"
输出:
4.6.0-dev
Numpy
pip install -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com numpy
CUDA
sudo apt-get install freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libgl1-mesa-glx libglu1-mesa libglu1-mesa-dev
sudo sh cuda_11.7.0_515.43.04_linux.run
Do you accept the previously read EULA?
accept/decline/quit: accept
Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 410.48?
(y)es/(n)o/(q)uit: no
Install the CUDA 10.0 Toolkit?
(y)es/(n)o/(q)uit: yes
Enter Toolkit Location
[ default is /usr/local/cuda-10.0 ]:
Do you want to install a symbolic link at /usr/local/cuda?
(y)es/(n)o/(q)uit: yes
Install the CUDA 10.0 Samples?
(y)es/(n)o/(q)uit: yes
等到安装结束即可.
配置环境变量:
sudo gedit ~/.bashrc
末尾加上:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64
export PATH=$PATH:/usr/local/cuda/bin
export CUDA_HOME=$CUDA_HOME:/usr/local/cuda
保存
source ~/.bashrc
nvcc -V
cuDNN
sudo dpkg -i libcudnn8_8.0.5.39-1+cuda11.1_amd64.deb
sudo dpkg -i libcudnn8-dev_8.0.5.39-1+cuda11.1_amd64.deb
sudo dpkg -i libcudnn8-samples_8.0.5.39-1+cuda11.1_amd64.deb
Pytorch(cuda11.7)
conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia