一、神经网络基础
1.变量
1.1 Variable计算,梯度
Variable 计算时, 它在背景幕布后面一步步默默地搭建着一个庞大的系统, 叫做计算图, computational graph. 这个图是用来干嘛的? 原来是将所有的计算步骤 (节点) 都连接起来, 最后进行误差反向传递的时候, 一次性将所有 variable 里面的修改幅度 (梯度) 都计算出来, 而 tensor 就没有这个能力啦.
1.2获取 Variable 里面的数据
直接print(variable)
只会输出 Variable 形式的数据, 在很多时候是用不了的(比如想要用 plt 画图), 所以我们要转换一下, 将它变成 tensor 形式.
2.激励函数
2.1非线性方程
2.2激励函数
可以创造自己的激励函数来处理自己的问题, 不过要确保的是这些激励函数必须是可以微分的, 因为在 backpropagation 误差反向传递的时候, 只有这些可微分的激励函数才能把误差传递回去.
2.3常用选择
在卷积神经网络 Convolutional neural networks 的卷积层中, 推荐的激励函数是 relu. 在循环神经网络中 recurrent neural networks, 推荐的是 tanh 或者是 relu
2.4Torch中的激励函数
Torch 中的激励函数有很多, 不过我们平时要用到的就这几个. relu
, sigmoid
, tanh
, softplus
.
二、建立第一个神经网络
1.关系拟合(回归)
1.1建立数据集
创建一些假数据来模拟真实的情况. 比如一个一元二次函数: y = a * x^2 + b
, 我们给 y
数据加上一点噪声来更加真实的展示它
import torch
import matplotlib.pyplot as plt
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) # x data (tensor), shape=(100, 1)
y = x.pow(2) + 0.2*torch.rand(x.size()) # noisy y data (tensor), shape=(100, 1)
# 画图
plt.scatter(x.data.numpy(), y.data.numpy())
plt.show()
1.2建立神经网络
建立一个神经网络我们可以直接运用 torch 中的体系. 先定义所有的层属性(__init__()
), 然后再一层层搭建(forward(x)
)层于层的关系链接.
import torch
import torch.nn.functional as F # 激励函数都在这
class Net(torch.nn.Module): # 继承 torch 的 Module
def __init__(self, n_feature, n_hidden, n_output):
super(Net, self).__init__() # 继承 __init__ 功能
# 定义每层用什么样的形式
self.hidden = torch.nn.Linear(n_feature, n_hidden) # 隐藏层线性输出
self.predict = torch.nn.Linear(n_hidden, n_output) # 输出层线性输出
def forward(self, x): # 这同时也是 Module 中的 forward 功能
# 正向传播输入值, 神经网络分析出输出值
x = F.relu(self.hidden(x)) # 激励函数(隐藏层的线性值)
x = self.predict(x) # 输出值
return x
net = Net(n_feature=1, n_hidden=10, n_output=1)
print(net) # net 的结构
"""
Net (
(hidden): Linear (1 -> 10)
(predict): Linear (10 -> 1)
)
"""
1.3训练网格
# optimizer 是训练的工具
optimizer = torch.optim.SGD(net.parameters(), lr=0.2) # 传入 net 的所有参数, 学习率
loss_func = torch.nn.MSELoss() # 预测值和真实值的误差计算公式 (均方差)
for t in range(100):
prediction = net(x) # 喂给 net 训练数据 x, 输出预测值
loss = loss_func(prediction, y) # 计算两者的误差
optimizer.zero_grad() # 清空上一步的残余更新参数值
loss.backward() # 误差反向传播, 计算参数更新值
optimizer.step() # 将参数更新值施加到 net 的 parameters 上
1.4可视化训练过程
import matplotlib.pyplot as plt
plt.ion() # 画图
plt.show()
for t in range(200):
...
loss.backward()
optimizer.step()
# 接着上面来
if t % 5 == 0:
# plot and show learning process
plt.cla()
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
plt.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'})
plt.pause(0.1)
2.区分类型(分类)
3.快速搭建法
torch.nn.Sequential()
根据此函数快速搭建方法二
net2 = torch.nn.Sequential(
torch.nn.Linear(1, 10),
torch.nn.ReLU(),
torch.nn.Linear(10, 1)
)
4.保存提取
保存
torch.save(net1, 'net.pkl') # 保存整个网络
torch.save(net1.state_dict(), 'net_params.pkl') # 只保存网络中的参数 (速度快, 占内存少)
#两种途径来保存
提取两种方法:1.提取整个神经网络, 网络大的时候可能会比较慢。2.提取所有的参数, 然后再放到你的新建网络中。
def restore_net():
# restore entire net1 to net2
net2 = torch.load('net.pkl')
prediction = net2(x)
def restore_params():
# 新建 net3
net3 = torch.nn.Sequential(
torch.nn.Linear(1, 10),
torch.nn.ReLU(),
torch.nn.Linear(10, 1)
)
# 将保存的参数复制到 net3
net3.load_state_dict(torch.load('net_params.pkl'))
prediction = net3(x)
5.批数据训练
Torch 中提供了一种帮你整理你的数据结构的好东西, 叫做 DataLoader
, 我们能用它来包装自己的数据, 进行批训练。
DataLoader
是 torch 给你用来包装你的数据的工具. 所以你要讲自己的 (numpy array 或其他) 数据形式装换成 Tensor, 然后再放进这个包装器中。
优化器加速训练SGD
6.Optimizer优化器
不同的优化器, 用来训练不同的网络. 并创建一个 loss_func
用来计算误差. 我们用几种常见的优化器, SGD
, Momentum
, RMSprop
, Adam
SGD
是最普通的优化器, 也可以说没有加速效果, 而 Momentum
是 SGD
的改良版, 它加入了动量原则. 后面的 RMSprop
又是 Momentum
的升级版. 而 Adam
又是 RMSprop
的升级版. 不过从这个结果中我们看到, Adam
的效果似乎比 RMSprop
要差一点. 所以说并不是越先进的优化器, 结果越佳. 我们在自己的试验中可以尝试不同的优化器, 找到那个最适合你数据/网络的优化器.
三、高级神经网络
1.CNN卷积神经网络
Actor网络和Critic网络可以使用不同的神经网络架构(如前馈神经网络或卷积神经网络)来表示。
除了训练数据, 还给一些测试数据, 测试看看它有没有训练好.
1.1CNN模型
主要用于图像识别
用一个 class 来建立 CNN 模型. 这个 CNN 整体流程是 卷积(过滤器扫描,提取特征属性)(Conv2d
) -> 激励函数(ReLU
) -> 池化, 向下采样 (MaxPooling
) -> 再来一遍 -> 展平多维的卷积成的特征图 -> 接入全连接层 (Linear
) -> 输出
2 . RNN循环神经网络分类
RNN模型
RNN 整体流程是
(input0, state0)
->LSTM
->(output0, state1)
;(input1, state1)
->LSTM
->(output1, state2)
;- ...
(inputN, stateN)
->LSTM
->(outputN, stateN+1)
;outputN
->Linear
->prediction
. 通过LSTM
分析每一时刻的值, 并且将这一时刻和前面时刻的理解合并在一起, 生成当前时刻对前面数据的理解或记忆. 传递这种理解给下一时刻分析.
训练
将图片数据看成一个时间上的连续数据, 每一行的像素点都是这个时刻的输入, 读完整张图片就是从上而下的读完了每行的像素点. 然后我们就可以拿出 RNN 在最后一步的分析值判断图片是哪一类了.
3.RNN循环神经网络 回归
我们对每一个 r_out
都得放到 Linear
中去计算出预测的 output
, 所以我们能用一个 for loop 来循环计算。forward
过程中的对每个时间点求输出还有一招使得计算量比较小的. 不过上面的内容主要是为了呈现 PyTorch 在动态构图上的优势, 所以我用了一个 for loop
来搭建那套输出系统。
4.AutoEncoder自编码
init死套路自编码
AutoEncoder 形式很简单, 分别是 encoder
和 decoder
, 压缩和解压, 压缩后得到压缩的特征值, 再从压缩的特征值解压成原图片.
5.DQN
神经网络:DQN 当中的神经网络模式, 我们将依据这个模式建立两个神经网络, 一个是现实网络 (Target Net), 一个是估计网络 (Eval Net). DQN体系:简化的 DQN 体系是这样, 我们有两个 net, 有选动作机制, 有存经历机制, 有学习机制
6.GAN生成对抗网络
类似于AC模型交互评价,超参数设置是actor的idea,用来获取思路,引入标准数据,进行训练
7.过拟合
学习模型过于自信. 已经到了自负的阶段
Dropout 缓解过拟合
在这里搭建两个神经网络, 一个没有 dropout
, 一个有 dropout
. 没有 dropout
的容易出现 过拟合, 那我们就命名为 net_overfitting
, 另一个就是 net_dropped
. torch.nn.Dropout(0.5)
这里的 0.5 指的是随机有 50% 的神经元会被关闭/丢弃.
net_overfitting = torch.nn.Sequential(
torch.nn.Linear(1, N_HIDDEN),
torch.nn.ReLU(),
torch.nn.Linear(N_HIDDEN, N_HIDDEN),
torch.nn.ReLU(),
torch.nn.Linear(N_HIDDEN, 1),
)
net_dropped = torch.nn.Sequential(
torch.nn.Linear(1, N_HIDDEN),
torch.nn.Dropout(0.5), # drop 50% of the neuron
torch.nn.ReLU(),
torch.nn.Linear(N_HIDDEN, N_HIDDEN),
torch.nn.Dropout(0.5), # drop 50% of the neuron
torch.nn.ReLU(),
torch.nn.Linear(N_HIDDEN, 1),
)
8.Batch Normalization批标准化
Batch normalization 的 batch 是批数据, 把数据分成小批小批进行 stochastic gradient descent. 而且在每批数据进行前向传递 forward propagation 的时候, 对每一层都进行 normalization 的处理
将 normalize 后的数据再扩展和平移. 原来这是为了让神经网络自己去学着使用和修改这个扩展参数 gamma 𝛾, 和 平移参数 β, 这样神经网络就能自己慢慢琢磨出前面的 normalization 操作到底有没有起到优化的作用, 如果没有起到作用, 我就使用 gamma 𝛾 和 beta β 来抵消一些 normalization 的操作