人工神经网络例题

本文介绍了如何基于训练集构建一个感知机模型。通过初始化参数、迭代更新模型参数,最终得到能够正确分类训练集所有样本的感知机模型。具体过程包括使用学习率α=1,从初始参数向量W=(0,0,0)^T开始,根据误分类样本不断调整模型,直至所有样本正确分类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

人工神经网络

例题

试根据训练集:

D = ( ( 1 , 2 ) T , 1 ) , ( ( 3 , 3 ) T , 1 ) , ( ( 2 , 1 ) T , − 1 ) , ( ( 5 , 2 ) T , − 1 ) D={((1,2)^T,1),((3,3)^T,1),((2,1)^T,-1),((5,2)^T,-1)} D=((1,2)T,1),((3,3)T,1),((2,1)T,1),((5,2)T,1)构造一个感知机模型,学习率α=1。

【解】已知感知机模型的具体形式为: f ( X ) = s g n ( W T X ) f(X)=sgn(W^T X) f(X)=sgn(WTX)

KaTeX parse error: Unknown column alignment: * at position 48: … \begin{array}{*̲*lr**} …

其中 ∗ ∗ W ∗ ∗ = ( b , w 1 , w 2 ) T , X = ( 1 , x 1 , x 2 ) T **W**=(b,w_1,w_2 )^T,X=(1,x_1,x_2 )^T W=(b,w1,w2)T,X=(1,x1,x2)T。使用数据集D构造感知机模型的具体步骤如下:

(1)初始化参数向量 W = ( 0 , 0 , 0 ) T W=(0,0,0)^T W=(0,0,0)T

(2)随机选择一个样本 ( ( 2 , 1 ) T , − 1 ) ((2,1)^T,-1) ((2,1)T,1)输入初始模型,求得 f ( X = ( 2 , 1 ) T ) = s g n ( 0 ) = 1 ≠ − 1 f(X=(2,1)^T )=sgn(0)=1≠-1 f(X=(2,1)T)=sgn(0)=1=1,该样本未被感知机模型正确分类,使用如下公式更新模型参数:

w i = w i + α y i x i , b = b + α y i w_i=w_i+αy_i x_i, b=b+αy_i wi=wi+αyixi,b=b+αyi

计算得到新的参数向量 ∗ ∗ W = ∗ ∗ ( − 1 , − 2 , − 1 ) T **W=**(-1 ,-2,-1)^T W=(1,2,1)T,获得的感知机模型为:

f ( X ) = s g n ( − 2 x 1 − x 2 − 1 ) f(X)=sgn(-2x_1-x_2-1) f(X)=sgn(2x1x21)

将数据集D中样本均输入更新后的感知机模型中,若存在样本被错误分类,则根据步骤(2)中公式进行参数更新,直至D中所有样本均分类正确时结束算法并输出模型。

中所有样本均分类正确时结束算法并输出模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值