4.内存共享模型
4.1Java内存模型
JMM 即 Java Memory Model,它定义了主存、工作内存抽象概念,底层对应着 CPU 寄存器、缓存、硬件内存、
CPU 指令优化等。
JMM 体现在以下几个方面
- 原子性 - 保证指令不会受到线程上下文切换的影响
- 可见性 - 保证指令不会受 cpu 缓存的影响
- 有序性 - 保证指令不会受 cpu 指令并行优化的影响
4.2可见性
退不出的循环
static boolean run = true;
public static void main(String[] args) throws InterruptedException {
Thread t = new Thread(()->{
while(run){
// ....
}
});
t.start();
sleep(1);
run = false; // 线程t不会如预想的停下来
}
为什么线程t不会直接停止?
- 初始状态, t 线程刚开始从主内存读取了 run 的值到工作内存。
- 因为 t 线程要频繁从主内存中读取 run 的值,JIT 编译器会将 run 的值缓存至自己工作内存中的高速缓存中,
减少对主存中 run 的访问,提高效率
-
1 秒之后,main 线程修改了 run 的值,并同步至主存,而 t 是从自己工作内存中的高速缓存中读取这个变量
的值,结果永远是旧值
4.3解决方法:volatile
它可以用来修饰成员变量和静态成员变量,他可以避免线程从自己的工作缓存中查找变量的值,必须到主存中获取
它的值,线程操作 volatile 变量都是直接操作主存
使用volatile
getstatic run // 线程 t 获取 run true
getstatic run // 线程 t 获取 run true
getstatic run // 线程 t 获取 run true
getstatic run // 线程 t 获取 run true
putstatic run // 线程 main 修改 run 为 false, 仅此一次
getstatic run // 线程 t 获取 run false
4.4可见性问题
两个线程一个 i++ 一个 i-- ,只能保证看到最新值,不能解决指令交错
字节码分析:
// 假设i的初始值为0
getstatic i // 线程2-获取静态变量i的值 线程内i=0
getstatic i // 线程1-获取静态变量i的值 线程内i=0
iconst_1 // 线程1-准备常量1
iadd // 线程1-自增 线程内i=1
putstatic i // 线程1-将修改后的值存入静态变量i 静态变量i=1
iconst_1 // 线程2-准备常量1
isub // 线程2-自减 线程内i=-1
putstatic i // 线程2-将修改后的值存入静态变量i 静态变量i=-1
注意 synchronized 语句块既可以保证代码块的原子性,也同时保证代码块内变量的可见性。但缺点是
synchronized 是属于重量级操作,性能相对更低
如果在前面示例的死循环中加入 System.out.println() 会发现即使不加 volatile 修饰符,线程 t 也能正确看到
对 run 变量的修改了,想一想为什么?
A:从System.out.println 从内存中读取变量
synchronized如何保证可见性:
我们都知道sychronized底层是通过monitorenter的指令来进行加锁的、通过monitorexit指令来释放锁的。
但是很多人都不知道的一点是,monitorenter指令其实还具有Load屏障的作用。
也就是通过monitorenter指令之后,synchronized内部的共享变量,每次读取数据的时候被强制从主内存读取最新的数据。
同样的道理monitorexit指令也具有Store屏障的作用,也就是让synchronized代码块内的共享变量,如果数据有变更的,强制刷新回主内存。
这样通过这种方式,数据修改之后立即刷新回主内存,其他线程进入synchronized代码块后,使用共享变量的时候强制读取主内存的数据,上一个线程对共享变量的变更操作,它就能立即看到了。
4.5CPU缓存结构原理(计组内容 可跳)
CPU缓存结构
速度比较**(计组内容):**
location | clock_time |
---|---|
寄存器 | 1 cycle |
L1 | 3~4 cycle |
L2 | 10~20 cycle |
L3 | 40~45 cycle |
内存 | 120~240 cycle |
缓存如何存取可以自己查资料,我简述一下
通过将内存单元分组 缓存上会记录数据的组位置以及组内位置,例如
000 1 1 是第一组
000 是组内位置 有效位 1 是这个缓存记录是否还有效 缓存过期策略详见资料
CPU缓存读
- 根据低位,计算在缓存中的索引
- 判断是否有效
- 0 去内存读取新数据更新缓存行
- 再对比高位组标记是否一致
- 一致,根据偏移量返回缓存数据
- 不一致,去内存读取新数据更新缓存行
CPU 缓存一致性
MESI 协议
-
E、S、M 状态的缓存行都可以满足 CPU 的读请求
-
E 状态的缓存行,有写请求,会将状态改为 M,这时并不触发向主存的写
-
E 状态的缓存行,必须监听该缓存行的读操作,如果有,要变为 S 状态
-
-
M 状态的缓存行,必须监听该缓存行的读操作,如果有,先将其它缓存(S 状态)中该缓存行变成 I 状态(即6.的流程),写入主存,自己变为 S 状态
-
S 状态的缓存行,有写请求,走 4. 的流程
-
S 状态的缓存行,必须监听该缓存行的失效操作,如果有,自己变为 I 状态
-
I 状态的缓存行,有读请求,必须从主存读取
内存屏障
-
可见性
-
写屏障(sfence)保证在该屏障之前的,对共享变量的改动,都同步到主存当中
-
而读屏障(lfence)保证在该屏障之后,对共享变量的读取,加载的是主存中最新数据
-
-
有序性
-
写屏障会确保指令重排序时,不会将写屏障之前的代码排在写屏障之后
-
读屏障会确保指令重排序时,不会将读屏障之后的代码排在读屏障之前
-
写屏障之前指令排序以及 变量改动都是“正常”的
读屏障之后指令排序以及 变量改动都是“正常”的
4.6有序性
如果在一个线程观察另一个线程,所有操作都是无序的指的是 “指令重排序” 和 “工作内存与主内存同步延迟” 现象
思考:
static int i;
static int j;
// 在某个线程内执行如下赋值操作
i = ...;
j = ...;
// 指令会先执行i = ... 还是 j = ...
// 事实上都有可能
原理:指令级并行
- Clock Cycle Time
主频的概念大家接触的比较多,而 CPU 的 Clock Cycle Time(时钟周期时间),等于主频的倒数,意思是 CPU 能
够识别的最小时间单位,比如说 4G 主频的 CPU 的 Clock Cycle Time 就是 0.25 ns,作为对比,我们墙上挂钟的
Cycle Time 是 1s
- CPI
有的指令需要更多的时钟周期时间,所以引出了 CPI (Cycles Per Instruction)指令平均时钟周期数
- IPC
IPC(Instruction Per Clock Cycle) 即 CPI 的倒数,表示每个时钟周期能够运行的指令数
- CPU 执行时间
程序的 CPU 执行时间,即我们前面提到的 user + system 时间,可以用下面的公式来表示
程序
C
P
U
执行时间
=
指令数
∗
C
P
I
∗
C
l
o
c
k
C
y
c
l
e
T
i
m
e
程序 CPU 执行时间 = 指令数 * CPI * Clock Cycle Time
程序CPU执行时间=指令数∗CPI∗ClockCycleTime
指令重排序优化
事实上,现代处理器会设计为一个时钟周期完成一条执行时间最长的 CPU 指令。为什么这么做呢?可以想到指令
还可以再划分成一个个更小的阶段,例如,每条指令都可以分为: 取指令 - 指令译码 - 执行指令 - 内存访问 - 数据
写回 这 5 个阶段
instruction fetch (IF)
instruction decode (ID)
execute (EX)
memory access (MEM)
register write back (WB)
在不改变程序结果的前提下,这些指令的各个阶段可以通过重排序和组合来实现指令级并行
目的:分阶段,分工是提升效率的关键!
指令重排的前提是,重排指令不能影响结果,例如:
// 可以重排的例子
int a = 10; // 指令1
int b = 20; // 指令2
System.out.println( a + b );
// 不能重排的例子
int a = 10; // 指令1
int b = a - 5; // 指令2
支持流水线的处理器
现代 CPU 支持多级指令流水线,例如支持同时执行 取指令 - 指令译码 - 执行指令 - 内存访问 - 数据写回 的处理
器,就可以称之为五级指令流水线。这时 CPU 可以在一个时钟周期内,同时运行五条指令的不同阶段(相当于一
条执行时间最长的复杂指令),IPC = 1,本质上,流水线技术并不能缩短单条指令的执行时间,但它变相地提高了
指令地吞吐率。
SuperScalar 处理器
大多数处理器包含多个执行单元,并不是所有计算功能都集中在一起,可以再细分为整数运算单元、浮点数运算单
元等,这样可以把多条指令也可以做到并行获取、译码等,CPU 可以在一个时钟周期内,执行多于一条指令,IPC
> 1
有序性多线程情况下诡异的结果
int num = 0;
boolean ready = false;
// 线程1 执行此方法
public void actor1(I_Result r) {
if(ready) {
r.r1 = num + num;
} else {
r.r1 = 1;
}
}
// 线程2 执行此方法
public void actor2(I_Result r) {
num = 2;
ready = true;
}
out: 0 1 4 … 出现多种情况
这种现象叫做指令重排,是 JIT 编译器在运行时的一些优化,这个现象需要通过大量测试才能复现:
指令重排
首先说一下什么是指令重排,指令重排是指JVM在编译Java代码的时候,或者CPU在执行JVM字节码的时候,对现有的指令顺序进行重新排序。指令重排的目的是为了在不改变程序执行结果的前提下,优化程序的运行效率。需要注意的是,这里所说的不改变执行结果,指的是不改变单线程下的程序执行结果,即必须遵守as-if-serial语义(as-if-serial语义:不管怎么重排序(编译器和处理器为了提高并行度),(单线程)程序的执行结果不能被改变)
借助 java 并发压测工具 jcstress
out:
*** INTERESTING tests
Some interesting behaviors observed. This is for the plain curiosity.
2 matching test results.
[OK] test.ConcurrencyTest
(JVM args: [-XX:-TieredCompilation])
Observed state Occurrences Expectation Interpretation
0 1,729 ACCEPTABLE_INTERESTING !!!!
1 42,617,915 ACCEPTABLE ok
4 5,146,627 ACCEPTABLE ok
[OK] test.ConcurrencyTest
(JVM args: [])
Observed state Occurrences Expectation Interpretation
0 1,652 ACCEPTABLE_INTERESTING !!!!
1 46,460,657 ACCEPTABLE ok
4 4,571,072 ACCEPTABLE ok
解决方法:volatile
volatile 修饰的变量,可以禁用指令重排
重试上一次代码,ready 改为 volatile 修饰
结果:
*** INTERESTING tests
Some interesting behaviors observed. This is for the plain curiosity.
0 matching test results.
4.7volatile原理(**)
volatile 的底层实现原理是内存屏障,Memory Barrier(Memory Fence)(详细看4.5 内存屏障 )
-
对 volatile 变量的写指令后会加入写屏障
-
对 volatile 变量的读指令前会加入读屏障
public void actor1(I_Result r) {
// 读屏障
// ready 是 volatile 读取值带读屏障
if(ready) {
r.r1 = num + num;
} else {
r.r1 = 1;
}
}
public void actor2(I_Result r) {
num = 2;
ready = true; // ready 是 volatile 赋值带写屏障
// 写屏障
}
如何保证可见性
-
写屏障(sfence)保证在该屏障之前的,对共享变量的改动,都同步到主存当中
-
而读屏障(lfence)保证在该屏障之后,对共享变量的读取,加载的是主存中最新数据
如何保证有序性
- 写屏障会确保指令重排序时,不会将写屏障之前的代码排在写屏障之后
- 读屏障会确保指令重排序时,不会将读屏障之后的代码排在读屏障之前
还是那句话,不能解决指令交错:
写屏障仅仅是保证之后的读能够读到最新的结果,但不能保证读跑到它前面去
而有序性的保证也只是保证了本线程内相关代码不被重排序
double-checked locking 问题
以著名的 double-checked locking 单例模式为例
public final class Singleton {
private Singleton() { }
private static Singleton INSTANCE = null;
public static Singleton getInstance() {
if(INSTANCE == null) { // t2
// 首次访问会同步,而之后的使用没有 synchronized
synchronized(Singleton.class) {
if (INSTANCE == null) { // t1
INSTANCE = new Singleton();
}
}
}
return INSTANCE;
}
}
以上的实现特点是:
-
懒惰实例化
-
首次使用 getInstance() 才使用 synchronized 加锁,后续使用时无需加锁
-
有隐含的,但很关键的一点:第一个 if 使用了 INSTANCE 变量,是在同步块之外但在多线程环境下,上面的代码是有问题的,getInstance 方法对应的字节码为:
0: getstatic #2 // Field INSTANCE:Lcn/itcast/n5/Singleton; 3: ifnonnull 37 6: ldc #3 // class cn/itcast/n5/Singleton 8: dup 9: astore_0 10: monitorenter 11: getstatic #2 // Field INSTANCE:Lcn/itcast/n5/Singleton; 14: ifnonnull 27 17: new #3 // class cn/itcast/n5/Singleton 20: dup 21: invokespecial #4 // Method "<init>":()V 24: putstatic #2 // Field INSTANCE:Lcn/itcast/n5/Singleton; 27: aload_0 28: monitorexit 29: goto 37 32: astore_1 33: aload_0 34: monitorexit 35: aload_1 36: athrow 37: getstatic #2 // Field INSTANCE:Lcn/itcast/n5/Singleton; 40: areturn
-
17 表示创建对象,将对象引用入栈 // new Singleton
-
20 表示复制一份对象引用 // 引用地址
-
21 表示利用一个对象引用,调用构造方法
-
24 表示利用一个对象引用,赋值给 static INSTANCE
也许 jvm 会优化为:先执行 24,再执行 21。如果两个线程 t1,t2 按如下时间序列执行:
-
也就是t1线程将singleton尚未完全初始化,而已经将引用值赋给singleton,t2直接获取到了未初始化的singleton
关键在于 0: getstatic 这行代码在 monitor 控制之外,它就像之前举例中不守规则的人,可以越过 monitor 读取
INSTANCE 变量的值
这时 t1 还未完全将构造方法执行完毕,如果在构造方法中要执行很多初始化操作,那么 t2 拿到的是将是一个未初
始化完毕的单例
对 INSTANCE 使用 volatile 修饰即可,可以禁用指令重排,但要注意在 JDK 5 以上的版本的 volatile 才会真正有效
解决:
public final class Singleton {
private Singleton() { }
private static volatile Singleton INSTANCE = null;
public static Singleton getInstance() {
// 实例没创建,才会进入内部的 synchronized代码块
if (INSTANCE == null) {
synchronized (Singleton.class) { // t2
// 也许有其它线程已经创建实例,所以再判断一次
if (INSTANCE == null) { // t1
INSTANCE = new Singleton();
}
}
}
return INSTANCE;
}
}
// -------------------------------------> 加入对 INSTANCE 变量的读屏障
0: getstatic #2 // Field INSTANCE:Lcn/itcast/n5/Singleton;
3: ifnonnull 37
6: ldc #3 // class cn/itcast/n5/Singleton
8: dup
9: astore_0
10: monitorenter -----------------------> 保证原子性、可见性
11: getstatic #2 // Field INSTANCE:Lcn/itcast/n5/Singleton;
14: ifnonnull 27
17: new #3 // class cn/itcast/n5/Singleton
20: dup
21: invokespecial #4 // Method "<init>":()V
24: putstatic #2 // Field INSTANCE:Lcn/itcast/n5/Singleton;
// -------------------------------------> 加入对 INSTANCE 变量的写屏障
27: aload_0
28: monitorexit ------------------------> 保证原子性、可见性
29: goto 37
32: astore_1
33: aload_0
34: monitorexit
35: aload_1
36: athrow
37: getstatic #2 // Field INSTANCE:Lcn/itcast/n5/Singleton;
40: areturn
如上面的注释内容所示,读写 volatile 变量时会加入内存屏障(Memory Barrier(Memory Fence)),保证下面
两点:
-
可见性
-
写屏障(sfence)保证在该屏障之前的 t1 对共享变量的改动,都同步到主存当中
-
而读屏障(lfence)保证在该屏障之后 t2 对共享变量的读取,加载的是主存中最新数据
-
-
有序性
- 写屏障会确保指令重排序时,不会将写屏障之前的代码排在写屏障之后
- 读屏障会确保指令重排序时,不会将读屏障之后的代码排在读屏障之前
-
更底层是读写变量时使用 lock 指令来多核 CPU 之间的可见性与有序性
volatile与synchronized
synchronized
保证: 原子性、有序性和可见性
volatile
保证: 有序性、可见性注意:这两个有序的意思是不一样的。
synchronized
是不能保证指令重排的
synchronized
的有序性:是持有相同锁的两个同步块只能串行的进入,即被加锁的内容要按照顺序被多个线程执行,但是其内部的同步代码还是会发生重排序,使块与块之间有序可见。volatile
的有序性:是通过插入内存屏障来保证指令按照顺序执行。不会存在后面的指令跑到前面的指令之前来执行。是保证编译器优化的时候不会让指令乱序。
ynchronized保证有序性:和volatile一样
是持有相同锁的两个同步块只能串行的进入,即被加锁的内容要按照顺序被多个线程执行,但是其内部的同步代码还是会发生重排序,使块与块之间有序可见。
保证的是同步代码块中的有序性
StoreStore屏障:禁止StoreStore屏障的前后Store写操作重排
LoadLoad屏障:禁止LoadLoad屏障的前后Load读操作进行重排
LoadStore屏障:禁止LoadStore屏障的前面Load读操作跟LoadStore屏障后面的Store写操作重排
StoreLoad屏障:禁止LoadStore屏障前面的Store写操作跟后面的Load/Store 读写操作
也是通过monitorenter、monitorexit指令嵌入上面的内存屏障;monitorenter、monitorexit这两条指令其实就相当于复合指令,既具有加锁、释放锁的功能,同时也具有内存屏障的功能
但是无法禁止指令重排
4.8happens-before
happens-before 规定了对共享变量的写操作对其它线程的读操作可见,它是可见性与有序性的一套规则总结,抛
开以下 happens-before 规则,JMM 并不能保证一个线程对共享变量的写,对于其它线程对该共享变量的读可见
通过volatile进行解决该问题
4.9单例模式
- 推荐:是线程安全的,当第一次使用这个类时会加载Instance,而JVM加载这个类初始化这个实例变量时是保证了线程的安全性的
public final class Singleton {
private Singleton() { }
// 问题1:属于懒汉式还是饿汉式
private static class LazyHolder {
static final Singleton INSTANCE = new Singleton();
}
// 问题2:在创建时是否有并发问题
public static Singleton getInstance() {
return LazyHolder.INSTANCE;
}
}
-
将锁加在类上,保证有序性和可见性,不会出现线程安全问题。缺点:效率低
public final class Singleton { private Singleton() { } private static Singleton INSTANCE = null; // 分析这里的线程安全, 并说明有什么缺点 public static synchronized Singleton getInstance() { if( INSTANCE != null ){ return INSTANCE; } INSTANCE = new Singleton(); return INSTANCE; } }
-
推荐:性能好,做了两次非空判断是为了防止线程安全问题
public final class Singleton {
private Singleton() { }
// 问题1:解释为什么要加 volatile ?
private static volatile Singleton INSTANCE = null;
// 问题2:对比实现3, 说出这样做的意义
public static Singleton getInstance() {
if (INSTANCE != null) {
return INSTANCE;
}
synchronized (Singleton.class) {
// 问题3:为什么还要在这里加为空判断, 之前不是判断过了吗
if (INSTANCE != null) { // t2
return INSTANCE;
}
INSTANCE = new Singleton();
return INSTANCE;
}
}
}