4-拟合问题

本文探讨了三种不同的神经网络参数初始化方法:全零、随机初始化和He初始化,以及如何通过L2正则化和随机节点删除防止过拟合。通过实例展示了不同初始化方式对模型性能的影响,并展示了梯度校验在模型优化中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import numpy as np
import matplotlib.pyplot as plt
import sklearn
import sklearn.datasets
import init_utils   #第一部分,初始化
import reg_utils    #第二部分,正则化
import gc_utils     #第三部分,梯度校验
#%matplotlib inline #如果你使用的是Jupyter Notebook,请取消注释。

plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

# 1. 初始化参数:
# 	1.1:使用0来初始化参数。
# 	1.2:使用随机数来初始化参数。
# 	1.3:使用抑梯度异常初始化参数(参见视频中的梯度消失和梯度爆炸)。
# 2. 正则化模型:
# 	2.1:使用二范数对二分类模型正则化,尝试避免过拟合。
# 	2.2:使用随机删除节点的方法精简模型,同样是为了尝试避免过拟合。
# 3. 梯度校验  :对模型使用梯度校验,检测它是否在梯度下降的过程中出现误差过大的情况。
# 我们在初始化之前,我们来看看我们的数据集是怎样的:
# 读取并绘制数据
train_X, train_Y, test_X, test_Y = init_utils.load_dataset(is_plot=True)
# 我们将要建立一个分类器把蓝点和红点分开,在之前我们已经实现过一个3层的神经网络,我们将对它进行初始化:
# 尝试下面三种初始化方法:
# 1.初始化为0:在输入参数中全部初始化为0,参数名为initialization = “zeros”
# 2.初始化为随机数:把输入参数设置为随机值,权重初始化为大的随机值。参数名为initialization = “random”
# 3.抑梯度异常初始化:参见梯度消失和梯度爆炸的那一个视频,参数名为initialization = “he”

# 1.初始化为零
def initialize_parameters_zeros(layers_dims):
    """
    将模型的参数全部设置为0

    参数:
        layers_dims - 列表,模型的层数和对应每一层的节点的数量
    返回
        parameters - 包含了所有W和b的字典
            W1 - 权重矩阵,维度为(layers_dims[1], layers_dims[0])
            b1 - 偏置向量,维度为(layers_dims[1],1)
            ···
            WL - 权重矩阵,维度为(layers_dims[L], layers_dims[L -1])
            bL - 偏置向量,维度为(layers_dims[L],1)
    """
    parameters = {}

    L = len(layers_dims)  # 网络层数

    for l in range(1, L):
        parameters["W" + str(l)] = np.zeros((layers_dims[l], layers_dims[l - 1]))
        parameters["b" + str(l)] = np.zeros((layers_dims[l], 1))

        # 使用断言确保我的数据格式是正确的
        assert (parameters["W" + str(l)].shape == (layers_dims[l], layers_dims[l - 1]))
        assert (parameters["b" + str(l)].shape == (layers_dims[l], 1))

    return parameters
# parameters = initialize_parameters_zeros([3,2,1])
# print("W1 = " + str(parameters["W1"]))
# print("b1 = " + str(parameters["b1"]))
# print("W2 = " + str(parameters["W2"]))
# print("b2 = " + str(parameters["b2"]))

# 2.随机初始化:为了打破对称性,我们可以随机地把参数赋值。
# 在随机初始化之后,每个神经元可以开始学习其输入的不同功能,我们还会设置比较大的参数值,看看会发生什么。
def initialize_parameters_random(layers_dims):
    """
    参数:
        layers_dims - 列表,模型的层数和对应每一层的节点的数量
    返回
        parameters - 包含了所有W和b的字典
            W1 - 权重矩阵,维度为(layers_dims[1], layers_dims[0])
            b1 - 偏置向量,维度为(layers_dims[1],1)
            ···
            WL - 权重矩阵,维度为(layers_dims[L], layers_dims[L -1])
            b1 - 偏置向量,维度为(layers_dims[L],1)
    """

    np.random.seed(3)  # 指定随机种子
    parameters = {}
    L = len(layers_dims)  # 层数

    for l in range(1, L):
        parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) * 10  # 使用10倍缩放
        parameters['b' + str(l)] = np.zeros((layers_dims[l], 1))

        # 使用断言确保我的数据格式是正确的
        assert (parameters["W" + str(l)].shape == (layers_dims[l], layers_dims[l - 1]))
        assert (parameters["b" + str(l)].shape == (layers_dims[l], 1))

    return parameters
# parameters = initialize_parameters_random([3, 2, 1])
# print("W1 = " + str(parameters["W1"]))
# print("b1 = " + str(parameters["b1"]))
# print("W2 = " + str(parameters["W2"]))
# print("b2 = " + str(parameters["b2"]))

# 3.抑梯度异常初始化
def initialize_parameters_he(layers_dims):
    """
    参数:
        layers_dims - 列表,模型的层数和对应每一层的节点的数量
    返回
        parameters - 包含了所有W和b的字典
            W1 - 权重矩阵,维度为(layers_dims[1], layers_dims[0])
            b1 - 偏置向量,维度为(layers_dims[1],1)
            ···
            WL - 权重矩阵,维度为(layers_dims[L], layers_dims[L -1])
            b1 - 偏置向量,维度为(layers_dims[L],1)
    """

    np.random.seed(3)  # 指定随机种子
    parameters = {}
    L = len(layers_dims)  # 层数

    for l in range(1, L):
        parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) * np.sqrt(2 / layers_dims[l - 1])
        parameters['b' + str(l)] = np.zeros((layers_dims[l], 1))

        # 使用断言确保我的数据格式是正确的
        assert (parameters["W" + str(l)].shape == (layers_dims[l], layers_dims[l - 1]))
        assert (parameters["b" + str(l)].shape == (layers_dims[l], 1))

    return parameters

# parameters = initialize_parameters_he([2, 4, 1])
# print("W1 = " + str(parameters["W1"]))
# print("b1 = " + str(parameters["b1"]))
# print("W2 = " + str(parameters["W2"]))
# print("b2 = " + str(parameters["b2"]))

#1.初始化
def model(X, Y, learning_rate=0.01, num_iterations=15000, print_cost=True, initialization="he", is_polt=True):
    """
    实现一个三层的神经网络:LINEAR ->RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID

    参数:
        X - 输入的数据,维度为(2, 要训练/测试的数量)
        Y - 标签,【0 | 1】,维度为(1,对应的是输入的数据的标签)
        learning_rate - 学习速率
        num_iterations - 迭代的次数
        print_cost - 是否打印成本值,每迭代1000次打印一次
        initialization - 字符串类型,初始化的类型【"zeros" | "random" | "he"】
        is_polt - 是否绘制梯度下降的曲线图
    返回
        parameters - 学习后的参数
    """
    grads = {}
    costs = []
    m = X.shape[1]
    layers_dims = [X.shape[0], 10, 5, 1]

    # 选择初始化参数的类型
    if initialization == "zeros":
        parameters = initialize_parameters_zeros(layers_dims)
    elif initialization == "random":
        parameters = initialize_parameters_random(layers_dims)
    elif initialization == "he":
        parameters = initialize_parameters_he(layers_dims)
    else:
        print("错误的初始化参数!程序退出")
        exit

    # 开始学习
    for i in range(0, num_iterations):
        # 前向传播
        a3, cache = init_utils.forward_propagation(X, parameters)

        # 计算成本
        cost = init_utils.compute_loss(a3, Y)

        # 反向传播
        grads = init_utils.backward_propagation(X, Y, cache)

        # 更新参数
        parameters = init_utils.update_parameters(parameters, grads, learning_rate)

        # 记录成本
        if i % 1000 == 0:
            costs.append(cost)
            # 打印成本
            if print_cost:
                print("第" + str(i) + "次迭代,成本值为:" + str(cost))

    # 学习完毕,绘制成本曲线
    if is_polt:
        plt.plot(costs)
        plt.ylabel('cost')
        plt.xlabel('iterations (per hundreds)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()

    # 返回学习完毕后的参数
    return parameters

#相关函数
def compute_cost_with_regularization(A3, Y, parameters, lambd):
    """
    实现公式2的L2正则化计算成本

    参数:
        A3 - 正向传播的输出结果,维度为(输出节点数量,训练/测试的数量)
        Y - 标签向量,与数据一一对应,维度为(输出节点数量,训练/测试的数量)
        parameters - 包含模型学习后的参数的字典
    返回:
        cost - 使用公式2计算出来的正则化损失的值

    """
    m = Y.shape[1]
    W1 = parameters["W1"]
    W2 = parameters["W2"]
    W3 = parameters["W3"]

    cross_entropy_cost = reg_utils.compute_cost(A3, Y)

    L2_regularization_cost = lambd * (np.sum(np.square(W1)) + np.sum(np.square(W2)) + np.sum(np.square(W3))) / (2 * m)

    cost = cross_entropy_cost + L2_regularization_cost

    return cost

# 当然,因为改变了成本函数,我们也必须改变向后传播的函数, 所有的梯度都必须根据这个新的成本值来计算。

def backward_propagation_with_regularization(X, Y, cache, lambd):
    """
    实现我们添加了L2正则化的模型的后向传播。

    参数:
        X - 输入数据集,维度为(输入节点数量,数据集里面的数量)
        Y - 标签,维度为(输出节点数量,数据集里面的数量)
        cache - 来自forward_propagation()的cache输出
        lambda - regularization超参数,实数

    返回:
        gradients - 一个包含了每个参数、激活值和预激活值变量的梯度的字典
    """

    m = X.shape[1]

    (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache

    dZ3 = A3 - Y

    dW3 = (1 / m) * np.dot(dZ3, A2.T) + ((lambd * W3) / m)
    db3 = (1 / m) * np.sum(dZ3, axis=1, keepdims=True)

    dA2 = np.dot(W3.T, dZ3)
    dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    dW2 = (1 / m) * np.dot(dZ2, A1.T) + ((lambd * W2) / m)
    db2 = (1 / m) * np.sum(dZ2, axis=1, keepdims=True)

    dA1 = np.dot(W2.T, dZ2)
    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    dW1 = (1 / m) * np.dot(dZ1, X.T) + ((lambd * W1) / m)
    db1 = (1 / m) * np.sum(dZ1, axis=1, keepdims=True)

    gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3, "dA2": dA2,
                 "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1,
                 "dZ1": dZ1, "dW1": dW1, "db1": db1}

    return gradients


def forward_propagation_with_dropout(X, parameters, keep_prob=0.5):
    """
    实现具有随机舍弃节点的前向传播。
    LINEAR -> RELU + DROPOUT -> LINEAR -> RELU + DROPOUT -> LINEAR -> SIGMOID.

    参数:
        X  - 输入数据集,维度为(2,示例数)
        parameters - 包含参数“W1”,“b1”,“W2”,“b2”,“W3”,“b3”的python字典:
            W1  - 权重矩阵,维度为(20,2)
            b1  - 偏向量,维度为(20,1)
            W2  - 权重矩阵,维度为(3,20)
            b2  - 偏向量,维度为(3,1)
            W3  - 权重矩阵,维度为(1,3)
            b3  - 偏向量,维度为(1,1)
        keep_prob  - 随机删除的概率,实数
    返回:
        A3  - 最后的激活值,维度为(1,1),正向传播的输出
        cache - 存储了一些用于计算反向传播的数值的元组
    """
    np.random.seed(1)

    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]

    # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    Z1 = np.dot(W1, X) + b1
    A1 = reg_utils.relu(Z1)

    # 下面的步骤1-4对应于上述的步骤1-4。
    D1 = np.random.rand(A1.shape[0], A1.shape[1])  # 步骤1:初始化矩阵D1 = np.random.rand(..., ...)
    D1 = D1 < keep_prob  # 步骤2:将D1的值转换为0或1(使​​用keep_prob作为阈值)
    A1 = A1 * D1  # 步骤3:舍弃A1的一些节点(将它的值变为0或False)
    A1 = A1 / keep_prob  # 步骤4:缩放未舍弃的节点(不为0)的值
    """
    #不理解的同学运行一下下面代码就知道了。
    import numpy as np
    np.random.seed(1)
    A1 = np.random.randn(1,3)

    D1 = np.random.rand(A1.shape[0],A1.shape[1])
    keep_prob=0.5
    D1 = D1 < keep_prob
    print(D1)

    A1 = 0.01
    A1 = A1 * D1
    A1 = A1 / keep_prob
    print(A1)
    """

    Z2 = np.dot(W2, A1) + b2
    A2 = reg_utils.relu(Z2)

    # 下面的步骤1-4对应于上述的步骤1-4。
    D2 = np.random.rand(A2.shape[0], A2.shape[1])  # 步骤1:初始化矩阵D2 = np.random.rand(..., ...)
    D2 = D2 < keep_prob  # 步骤2:将D2的值转换为0或1(使用keep_prob作为阈值)
    A2 = A2 * D2  # 步骤3:舍弃A1的一些节点(将它的值变为0或False)
    A2 = A2 / keep_prob  # 步骤4:缩放未舍弃的节点(不为0)的值

    Z3 = np.dot(W3, A2) + b3
    A3 = reg_utils.sigmoid(Z3)

    cache = (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3)

    return A3, cache


def backward_propagation_with_dropout(X, Y, cache, keep_prob):
    """
    实现我们随机删除的模型的后向传播。
    参数:
        X  - 输入数据集,维度为(2,示例数)
        Y  - 标签,维度为(输出节点数量,示例数量)
        cache - 来自forward_propagation_with_dropout()的cache输出
        keep_prob  - 随机删除的概率,实数

    返回:
        gradients - 一个关于每个参数、激活值和预激活变量的梯度值的字典
    """
    m = X.shape[1]
    (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3) = cache

    dZ3 = A3 - Y
    dW3 = (1 / m) * np.dot(dZ3, A2.T)
    db3 = 1. / m * np.sum(dZ3, axis=1, keepdims=True)
    dA2 = np.dot(W3.T, dZ3)

    dA2 = dA2 * D2  # 步骤1:使用正向传播期间相同的节点,舍弃那些关闭的节点(因为任何数乘以0或者False都为0或者False)
    dA2 = dA2 / keep_prob  # 步骤2:缩放未舍弃的节点(不为0)的值

    dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    dW2 = 1. / m * np.dot(dZ2, A1.T)
    db2 = 1. / m * np.sum(dZ2, axis=1, keepdims=True)

    dA1 = np.dot(W2.T, dZ2)

    dA1 = dA1 * D1  # 步骤1:使用正向传播期间相同的节点,舍弃那些关闭的节点(因为任何数乘以0或者False都为0或者False)
    dA1 = dA1 / keep_prob  # 步骤2:缩放未舍弃的节点(不为0)的值

    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    dW1 = 1. / m * np.dot(dZ1, X.T)
    db1 = 1. / m * np.sum(dZ1, axis=1, keepdims=True)

    gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3, "dA2": dA2,
                 "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1,
                 "dZ1": dZ1, "dW1": dW1, "db1": db1}

    return gradients


#2.正则化
def model(X, Y, learning_rate=0.3, num_iterations=30000, print_cost=True, is_plot=True, lambd=0, keep_prob=1):
    """
    实现一个三层的神经网络:LINEAR ->RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID

    参数:
        X - 输入的数据,维度为(2, 要训练/测试的数量)
        Y - 标签,【0(蓝色) | 1(红色)】,维度为(1,对应的是输入的数据的标签)
        learning_rate - 学习速率
        num_iterations - 迭代的次数
        print_cost - 是否打印成本值,每迭代10000次打印一次,但是每1000次记录一个成本值
        is_polt - 是否绘制梯度下降的曲线图
        lambd - 正则化的超参数,实数
        keep_prob - 随机删除节点的概率
    返回
        parameters - 学习后的参数
    """
    grads = {}
    costs = []
    m = X.shape[1]
    layers_dims = [X.shape[0], 20, 3, 1]

    # 初始化参数
    parameters = reg_utils.initialize_parameters(layers_dims)

    # 开始学习
    for i in range(0, num_iterations):
        # 前向传播
        ##是否随机删除节点
        if keep_prob == 1:
            ###不随机删除节点
            a3, cache = reg_utils.forward_propagation(X, parameters)
        elif keep_prob < 1:
            ###随机删除节点
            a3, cache = forward_propagation_with_dropout(X, parameters, keep_prob)
        else:
            print("keep_prob参数错误!程序退出。")
            exit

        # 计算成本
        ## 是否使用二范数
        if lambd == 0:
            ###不使用L2正则化
            cost = reg_utils.compute_cost(a3, Y)
        else:
            ###使用L2正则化
            cost = compute_cost_with_regularization(a3, Y, parameters, lambd)

        # 反向传播
        ##可以同时使用L2正则化和随机删除节点,但是本次实验不同时使用。
        assert (lambd == 0 or keep_prob == 1)

        ##两个参数的使用情况
        if (lambd == 0 and keep_prob == 1):
            ### 不使用L2正则化和不使用随机删除节点
            grads = reg_utils.backward_propagation(X, Y, cache)
        elif lambd != 0:
            ### 使用L2正则化,不使用随机删除节点
            grads = backward_propagation_with_regularization(X, Y, cache, lambd)
        elif keep_prob < 1:
            ### 使用随机删除节点,不使用L2正则化
            grads = backward_propagation_with_dropout(X, Y, cache, keep_prob)

        # 更新参数
        parameters = reg_utils.update_parameters(parameters, grads, learning_rate)

        # 记录并打印成本
        if i % 1000 == 0:
            ## 记录成本
            costs.append(cost)
            if (print_cost and i % 10000 == 0):
                # 打印成本
                print("第" + str(i) + "次迭代,成本值为:" + str(cost))

    # 是否绘制成本曲线图
    if is_plot:
        plt.plot(costs)
        plt.ylabel('cost')
        plt.xlabel('iterations (x1,000)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()

    # 返回学习后的参数
    return parameters

# --------------------------------------------------初始化-----------------------------------------------------------
# # 1.W和b全部被初始化为0,使用这些参数来训练模型
# parameters = model(train_X, train_Y, initialization = "zeros",is_polt=True)
#
# #预测的结果怎么样:
# print ("训练集:")
# predictions_train = init_utils.predict(train_X, train_Y, parameters)
# print ("测试集:")
# predictions_test = init_utils.predict(test_X, test_Y, parameters)
#
# # 让我们看看预测和决策边界的细节:分类失败,该模型预测每个都为0。
# # 通常来说,零初始化都会导致神经网络无法打破对称性,最终导致的结果就是无论网络有多少层,最终只能得到和Logistic函数相同的效果。
# print("predictions_train = " + str(predictions_train))
# print("predictions_test = " + str(predictions_test))
#
# plt.title("Model with Zeros initialization")
# axes = plt.gca()
# axes.set_xlim([-1.5, 1.5])
# axes.set_ylim([-1.5, 1.5])
# init_utils.plot_decision_boundary(lambda x: init_utils.predict_dec(parameters, x.T), train_X, train_Y)
# # 1.结束


# # 2.参数都是比较大的,我们来看看实际运行会怎么样:
# parameters = model(train_X, train_Y, initialization = "random",is_polt=True)
# print("训练集:")
# predictions_train = init_utils.predict(train_X, train_Y, parameters)
# print("测试集:")
# predictions_test = init_utils.predict(test_X, test_Y, parameters)
#
# print(predictions_train)
# print(predictions_test)
#
# #我们来把图绘制出来,看看分类的结果是怎样的:我们可以看到误差开始很高。
# # 这是因为由于具有较大的随机权重,最后一个激活(sigmoid)输出的结果非常接近于0或1,
# # 而当它出现错误时,它会导致非常高的损失。初始化参数如果没有很好地话会导致梯度消失、爆炸,这也会减慢优化算法。
# # 如果我们对这个网络进行更长时间的训练,我们将看到更好的结果,但是使用过大的随机数初始化会减慢优化的速度。
# plt.title("Model with large random initialization")
# axes = plt.gca()
# axes.set_xlim([-1.5, 1.5])
# axes.set_ylim([-1.5, 1.5])
# init_utils.plot_decision_boundary(lambda x: init_utils.predict_dec(parameters, x.T), train_X, train_Y)
# # # 2.结束

# # 3.基本把参数W初始化到了1附近,我们来实际运行一下看看:
# parameters = model(train_X, train_Y, initialization = "he",is_polt=True)
# print("训练集:")
# predictions_train = init_utils.predict(train_X, train_Y, parameters)
# print("测试集:")
# init_utils.predictions_test = init_utils.predict(test_X, test_Y, parameters)
# #我们可以看到误差越来越小,我们来绘制一下预测的情况:
# plt.title("Model with He initialization")
# axes = plt.gca()
# axes.set_xlim([-1.5, 1.5])
# axes.set_ylim([-1.5, 1.5])
# init_utils.plot_decision_boundary(lambda x: init_utils.predict_dec(parameters, x.T), train_X, train_Y)
# # # # 3.结束

# --------------------------------------------------正则化-----------------------------------------------------------
# #1.不使用正则化下模型的效果:对于训练集,精确度为94%;而对于测试集,精确度为91.5%
# parameters = model(train_X, train_Y,is_plot=True)
# print("训练集:")
# predictions_train = reg_utils.predict(train_X, train_Y, parameters)
# print("测试集:")
# predictions_test = reg_utils.predict(test_X, test_Y, parameters)
# #接下来,我们将分割曲线画出来:在无正则化时,分割曲线有了明显的过拟合特性。接下来,我们使用L2正则化:
# plt.title("Model without regularization")
# axes = plt.gca()
# axes.set_xlim([-0.75,0.40])
# axes.set_ylim([-0.75,0.65])
# reg_utils.plot_decision_boundary(lambda x: reg_utils.predict_dec(parameters, x.T), train_X, train_Y)

# # 2.使用正则化
# #直接放到模型中跑一下
# parameters = model(train_X, train_Y, lambd=0.7,is_plot=True)
# print("使用正则化,训练集:")
# predictions_train = reg_utils.predict(train_X, train_Y, parameters)
# print("使用正则化,测试集:")
# predictions_test = reg_utils.predict(test_X, test_Y, parameters)
#
# #分类的结果
# plt.title("Model with L2-regularization")
# axes = plt.gca()
# axes.set_xlim([-0.75,0.40])
# axes.set_ylim([-0.75,0.65])
# reg_utils.plot_decision_boundary(lambda x: reg_utils.predict_dec(parameters, x.T), train_X, train_Y)

# # --------------------------------------------------随机删除节点-----------------------------------------------------------
# parameters = model(train_X, train_Y, keep_prob=0.86, learning_rate=0.3,is_plot=True)
#
# print("使用随机删除节点,训练集:")
# predictions_train = reg_utils.predict(train_X, train_Y, parameters)
# print("使用随机删除节点,测试集:")
# reg_utils.predictions_test = reg_utils.predict(test_X, test_Y, parameters)
#
# #我们来看看它的分类情况:
# plt.title("Model with dropout")
# axes = plt.gca()
# axes.set_xlim([-0.75, 0.40])
# axes.set_ylim([-0.75, 0.65])
# reg_utils.plot_decision_boundary(lambda x: reg_utils.predict_dec(parameters, x.T), train_X, train_Y)

# # --------------------------------------------------梯度校验-----------------------------------------------------------


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值