【数据结构与算法02】单向链表与双向链表

1. 单向链表

1.1 单向链表介绍

单向链表是链表的一种,它由多个结点组成,每个结点都由一个数据域和一个指针域组成,数据域用来存储数据,指针域用来指向其后继结点。链表的头结点的数据域不存储数据,指针域指向第一个真正存储数据的结点
在这里插入图片描述

1.2 单向链表的API设计

在这里插入图片描述

1.3 单向链表的代码实现

import java.util.Iterator;

public class LinkList<T> implements Iterable<T>{
    //记录头结点
    private Node head;
    //记录链表的长度
    private int N;

    //结点类
    private class Node {
        //存储数据
        T item;
        //下一个结点
        Node next;

        public Node(T item, Node next) {
            this.item = item;
            this.next = next;
        }
    }

    public LinkList() {
        //初始化头结点、
        this.head = new Node(null,null);
        //初始化元素个数
        this.N=0;
    }

    //清空链表
    public void clear() {
        head.next=null;
        this.N=0;
    }

    //获取链表的长度
    public int length() {
        return N;
    }

    //判断链表是否为空
    public boolean isEmpty() {
        return N==0;
    }

    //获取指定位置i出的元素
    public T get(int i) {

        //通过循环,从头结点开始往后找,依次找i次,就可以找到对应的元素
        Node n = head.next;
        for(int index=0;index<i;index++){
            n=n.next;
        }

        return n.item;
    }

    //向链表中添加元素t
    public void insert(T t) {
        //找到当前最后一个结点

        Node n = head;
        while(n.next!=null){
            n=n.next;
        }


        //创建新结点,保存元素t
        Node newNode = new Node(t, null);
        //让当前最后一个结点指向新结点
        n.next=newNode;
        //元素的个数+1
        N++;
    }

    //向指定位置i出,添加元素t
    public void insert(int i, T t) {
        //找到i位置前一个结点
        Node pre = head;
        for(int index=0;index<=i-1;index++){
            pre=pre.next;
        }

        //找到i位置的结点
        Node curr = pre.next;
        //创建新结点,并且新结点需要指向原来i位置的结点
        Node newNode = new Node(t, curr);
        //原来i位置的前一个节点指向新结点即可
        pre.next=newNode;
        //元素的个数+1
        N++;
    }

    //删除指定位置i处的元素,并返回被删除的元素
    public T remove(int i) {
        //找到i位置的前一个节点
        Node pre = head;
        for(int index=0;index<=i-1;i++){
            pre=pre.next;
        }
        //要找到i位置的结点
        Node curr = pre.next;
        //找到i位置的下一个结点
        Node nextNode = curr.next;
        //前一个结点指向下一个结点
        pre.next=nextNode;
        //元素个数-1
        N--;
        return curr.item;
    }

    //查找元素t在链表中第一次出现的位置
    public int indexOf(T t) {
        //从头结点开始,依次找到每一个结点,取出item,和t比较,如果相同,就找到了
        Node n = head;
        for(int i=0;n.next!=null;i++){
            n=n.next;
            if (n.item.equals(t)){
                return i;
            }
        }
        return -1;
    }


    @Override
    public Iterator<T> iterator() {
        return new LIterator();
    }

    private class LIterator implements Iterator{
        private Node n;
        public LIterator(){
            this.n=head;
        }

        @Override
        public boolean hasNext() {
            return n.next!=null;
        }

        @Override
        public Object next() {
            n = n.next;
            return n.item;
        }
    }

    //用来反转整个链表
    public void reverse(){

        //判断当前链表是否为空链表,如果是空链表,则结束运行,如果不是,则调用重载的reverse方法完成反转
        if (isEmpty()){
            return;
        }

        reverse(head.next);
    }

    //反转指定的结点curr,并把反转后的结点返回
    public Node reverse(Node curr){
        if (curr.next==null){
            head.next=curr;
            return curr;
        }
        //递归的反转当前结点curr的下一个结点;返回值就是链表反转后,当前结点的上一个结点
        Node pre = reverse(curr.next);
        //让返回的结点的下一个结点变为当前结点curr;
        pre.next=curr;
        //把当前结点的下一个结点变为null
        curr.next=null;
        return curr;
    }
}

测试类:

public class LinkListTest {

    public static void main(String[] args) {
        //创建顺序表对象
        LinkList<String> sl = new LinkList<>();
        //测试插入
        sl.insert("姚明");
        sl.insert("科比");
        sl.insert("麦迪");
        sl.insert(0,"詹姆斯");

        for (String s : sl) {
            System.out.println(s);
        }

        System.out.println("------------------------------------------");

        //测试获取
        String getResult = sl.get(1);
        System.out.println("获取索引1处的结果为:"+getResult);
        //测试删除
        String removeResult = sl.remove(0);
        System.out.println("删除的元素是:"+removeResult);
        //测试清空
        sl.clear();
        System.out.println("清空后的线性表中的元素个数为:"+sl.length());
    }
}

在这里插入图片描述

2. 双向链表

2.1 双向列表介绍

双向链表也叫双向表,是链表的一种,它由多个结点组成,每个结点都由一个数据域和两个指针域组成,数据域用来存储数据,其中一个指针域用来指向其后继结点,另一个指针域用来指向前驱结点。链表的头结点的数据域不存储数据,指向前驱结点的指针域值为null,指向后继结点的指针域指向第一个真正存储数据的结点。
在这里插入图片描述

2.2 节点API介绍

按照面向对象的思想,我们需要设计一个类,来描述结点这个事物。由于结点是属于链表的,所以我们把结点类作为链表类的一个内部类来实现。
在这里插入图片描述

//结点类
    private class Node{
        public Node(T item, Node pre, Node next) {
            this.item = item;
            this.pre = pre;
            this.next = next;
        }

        //存储数据
        public T item;
        //指向上一个结点
        public Node pre;
        //指向下一个结点
        public Node next;
    }

2.3 双向链表API设计

在这里插入图片描述

2.4 双向链表代码实现

package day02_linear;

import java.util.Iterator;

public class TwoWayLinkList<T> implements Iterable<T> {
    //首结点
    private Node head;
    //最后一个结点
    private Node last;

    //链表的长度
    private int N;

    //结点类
    private class Node{
        public Node(T item, Node pre, Node next) {
            this.item = item;
            this.pre = pre;
            this.next = next;
        }

        //存储数据
        public T item;
        //指向上一个结点
        public Node pre;
        //指向下一个结点
        public Node next;
    }

    public TwoWayLinkList() {
        //初始化头结点和尾结点
        this.head = new Node(null,null,null);
        this.last=null;
        //初始化元素个数
        this.N=0;
    }

    //清空链表
    public void clear(){
        this.head.next=null;
        this.head.pre=null;
        this.head.item=null;
        this.last=null;
        this.N=0;
    }

    //获取链表长度
    public int length(){
        return N;
    }

    //判断链表是否为空
    public boolean isEmpty(){
        return N==0;
    }

    //获取第一个元素
    public T getFirst(){
        if (isEmpty()){
            return null;
        }
        return head.next.item;
    }

    //获取最后一个元素
    public T getLast(){
        if (isEmpty()){
            return null;
        }
        return last.item;
    }

    //插入元素t
    public void insert(T t){

        if (isEmpty()){
            //如果链表为空:

            //创建新的结点
            Node newNode = new Node(t,head, null);
            //让新结点称为尾结点
            last=newNode;
            //让头结点指向尾结点
            head.next=last;
        }else {
            //如果链表不为空
            Node oldLast = last;

            //创建新的结点
            Node newNode = new Node(t, oldLast, null);

            //让当前的尾结点指向新结点
            oldLast.next=newNode;
            //让新结点称为尾结点
            last = newNode;
        }

        //元素个数+1
        N++;

    }

    //向指定位置i处插入元素t
    public void insert(int i,T t){
        //找到i位置的前一个结点
        Node pre = head;
        for(int index=0;index<i;index++){
            pre=pre.next;
        }
        //找到i位置的结点
        Node curr = pre.next;
        //创建新结点
        Node newNode = new Node(t, pre, curr);
        //让i位置的前一个结点的下一个结点变为新结点
        pre.next=newNode;
        //让i位置的前一个结点变为新结点
        curr.pre=newNode;
        //元素个数+1
        N++;
    }

    //获取指定位置i处的元素
    public T get(int i){
        Node n = head.next;
        for(int index=0;index<i;index++){
            n=n.next;
        }
        return n.item;
    }

    //找到元素t在链表中第一次出现的位置
    public int indexOf(T t){
        Node n = head;
        for(int i=0;n.next!=null;i++){
            n=n.next;
            if (n.next.equals(t)){
                return i;
            }
        }
        return -1;
    }

    //删除位置i处的元素,并返回该元素
    public T remove(int i){
        //找到i位置的前一个结点
        Node pre = head;
        for(int index=0;index<i;index++){
            pre=pre.next;
        }
        //找到i位置的结点
        Node curr = pre.next;
        //找到i位置的下一个结点
        Node nextNode= curr.next;
        //让i位置的前一个结点的下一个结点变为i位置的下一个结点
        pre.next=nextNode;
        //让i位置的下一个结点的上一个结点变为i位置的前一个结点
        nextNode.pre=pre;
        //元素的个数-1
        N--;
        return curr.item;
    }

    @Override
    public Iterator<T> iterator() {
        return new TIterator();
    }

    private class TIterator implements Iterator{
        private Node n;
        public TIterator(){
            this.n=head;
        }
        @Override
        public boolean hasNext() {
            return n.next!=null;
        }

        @Override
        public Object next() {
            n=n.next;
            return n.item;
        }
    }

}

测试类

package day02_linear;



public class TwoWayLinkListTest {

    public static void main(String[] args) {
        //创建双向链表对象
        TwoWayLinkList<String> sl = new TwoWayLinkList<>();
        //测试插入
        sl.insert("姚明");
        sl.insert("科比");
        sl.insert("麦迪");
        sl.insert(1,"詹姆斯");

        for (String s : sl) {
            System.out.println(s);
        }

        System.out.println("--------------------------------------");
        System.out.println("第一个元素是:"+sl.getFirst());
        System.out.println("最后一个元素是:"+sl.getLast());

        System.out.println("------------------------------------------");

        //测试获取
        String getResult = sl.get(1);
        System.out.println("获取索引1处的结果为:"+getResult);
        //测试删除
        String removeResult = sl.remove(0);
        System.out.println("删除的元素是:"+removeResult);
        //测试清空
        sl.clear();
        System.out.println("清空后的线性表中的元素个数为:"+sl.length());


    }
}


在这里插入图片描述

3. 使用快慢指针判断链表是否有环

在这里插入图片描述

3.1 需求分析

使用快慢指针的思想,还是把链表比作一条跑道,链表中有环,那么这条跑道就是一条圆环跑道,在一条圆环跑道中,两个人有速度差,那么迟早两个人会相遇,只要相遇那么就说明有环。

3.2 代码实现

/**
     * 判断链表中是否有环,只要有环,快慢指针肯定能相遇
     * @param first 链表首结点
     * @return ture为有环,false为无环
     */
    public static boolean isCircle(Node<String> first) {
        Node<String> fast = first;
        Node<String> slow = first;
        while(fast.next!=null&&fast!=null){
            fast = fast.next.next;
            slow = slow.next;
            if(fast.equals(slow)){
                return true;
            }
        }
        return false;
    }

4. 约瑟夫问题

4.1 问题描述

传说有这样一个故事,在罗马人占领乔塔帕特后,39 个犹太人与约瑟夫及他的朋友躲到一个洞中,39个犹太人决定宁愿死也不要被敌人抓到,于是决定了一个自杀方式,41个人排成一个圆圈,第一个人从1开始报数,依次往后,如果有人报数到3,那么这个人就必须自杀,然后再由他的下一个人重新从1开始报数,直到所有人都自杀身亡为止。然而约瑟夫和他的朋友并不想遵从。于是,约瑟夫要他的朋友先假装遵从,他将朋友与自己安排在第16个与第31个位置,从而逃过了这场死亡游戏 。

问题转换:
41个人坐一圈,第一个人编号为1,第二个人编号为2,第n个人编号为n。

1.编号为1的人开始从1报数,依次向后,报数为3的那个人退出圈;

2.自退出那个人开始的下一个人再次从1开始报数,以此类推;

3.求出最后退出的那个人的编号。
在这里插入图片描述

4.2 解题思路

1.构建含有41个结点的单向循环链表,分别存储1~41的值,分别代表这41个人;
2.使用计数器count,记录当前报数的值;
3.遍历链表,每循环一次,count++;
4.判断count的值,如果是3,则从链表中删除这个结点并打印结点的值,把count重置为0;

package day02_linear;

public class yuesefu {
    public static void main(String[] args) {
        //解决约瑟夫问题

        //1.构建循环链表,包含41个结点,分别存储1~41之间的值
        //用来就首结点
        Node<Integer> first = null;
        //用来记录前一个结点
        Node<Integer> pre = null;

        for(int i = 1;i<=41;i++){

            //如果是第一个结点
            if (i==1){
                first = new Node<>(i,null);
                pre = first;
                continue;
            }

            //如果不是第一个结点
            Node<Integer> newNode = new Node<>(i, null);
            pre.next=newNode;
            pre=newNode;
            //如果是最后一个结点,那么需要让最后一个结点的下一个结点变为first,变为循环链表了
            if (i==41){
                pre.next=first;
            }

        }

        //2.需要count计数器,模拟报数
        int count=0;
        //3.遍历循环链表
        //记录每次遍历拿到的结点,默认从首结点开始
        Node<Integer> n = first;
        //记录当前结点的上一个结点
        Node<Integer> before = null;
        while(n!=n.next){
            //模拟报数

            count++;
            //判断当前报数是不是为3
            if (count==3){
                //如果是3,则把当前结点删除调用,打印当前结点,重置count=0,让当前结点n后移
                before.next=n.next;
                System.out.print(n.item+",");
                count=0;
                n=n.next;
            }else{
                //如果不是3,让before变为当前结点,让当前结点后移;
                before=n;
                n=n.next;
            }
        }

        //打印最后一个元素
        System.out.println(n.item);
    }

    //结点类
    private static class Node<T>{
        T item;
        Node next;

        public Node(T item, Node next) {
            this.item = item;
            this.next = next;
        }
    }
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值