算法训练营 day50 动态规划 单词拆分 多重背包理论基础

文章介绍了如何使用动态规划解决LeetCode上的单词拆分问题,其中涉及完全背包的概念,并通过示例解释了dp数组的初始化和递推公式。此外,还探讨了多重背包问题,将其转换为01背包问题的方法,提供了两种不同的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算法训练营 day50 动态规划 单词拆分 多重背包理论基础

单词拆分

139. 单词拆分 - 力扣(LeetCode)

给你一个字符串 s 和一个字符串列表 wordDict 作为字典。请你判断是否可以利用字典中出现的单词拼接出 s 。

注意:不要求字典中出现的单词全部都使用,并且字典中的单词可以重复使用。

单词就是物品,字符串s就是背包,单词能否组成字符串s,就是问物品能不能把背包装满。

拆分时可以重复使用字典中的单词,说明就是一个完全背包!

  1. 确定dp数组以及下标的含义

    dp[i] : 字符串长度为i的话,dp[i]为true,表示可以拆分为一个或多个在字典中出现的单词

  2. 确定递推公式

    如果确定dp[j] 是true,且 [j, i] 这个区间的子串出现在字典里,那么dp[i]一定是true。(j < i )。

    所以递推公式是 if([j, i] 这个区间的子串出现在字典里 && dp[j]是true) 那么 dp[i] = true。

  3. dp数组如何初始化

    从递推公式中可以看出,dp[i] 的状态依靠 dp[j]是否为true,那么dp[0]就是递推的根基,dp[0]一定要为true,否则递推下去后面都都是false了。

  4. 确定遍历顺序

    题目中说是拆分为一个或多个在字典中出现的单词,所以这是完全背包。

    还要讨论两层for循环的前后顺序。

    如果求组合数就是外层for循环遍历物品,内层for遍历背包

    如果求排列数就是外层for遍历背包,内层for循环遍历物品

    而本题其实我们求的是排列数,为什么呢。 拿 s = “applepenapple”, wordDict = [“apple”, “pen”] 举例。“apple”, “pen” 是物品,那么我们要求 物品的组合一定是 “apple” + “pen” + “apple” 才能组成 “applepenapple”。

    “apple” + “apple” + “pen” 或者 “pen” + “apple” + “apple” 是不可以的,那么我们就是强调物品之间顺序。所以说,本题一定是 先遍历 背包,再遍历物品。

  5. 举例推导dp[i]

    以输入: s = “leetcode”, wordDict = [“leet”, “code”]为例,dp状态如图:

在这里插入图片描述

dp[s.size()]就是最终结果。

class Solution {
    public boolean wordBreak(String s, List<String> wordDict) {
        boolean[] dp = new boolean[s.length()+1];
        Arrays.fill(dp,false);
        dp[0] = true;
        HashSet<String> set = new HashSet<>(wordDict);

        for (int i = 1; i <=s.length(); i++) {
            for (int j = 0; j <i; j++) {
                if (set.contains(s.substring(j,i)) && dp[j]){
                    dp[i] = true;
                }
            }
        }
        return dp[s.length()];
    }
}

多重背包理论基础

有N种物品和一个容量为V 的背包。第i种物品最多有Mi件可用,每件耗费的空间是Ci ,价值是Wi 。求解将哪些物品装入背包可使这些物品的耗费的空间 总和不超过背包容量,且价值总和最大。

多重背包和01背包是非常像的, 为什么和01背包像呢?

每件物品最多有Mi件可用,把Mi件摊开,其实就是一个01背包问题了。

例如:

背包最大重量为10。

物品为:

重量价值数量
物品01152
物品13203
物品24302

问背包能背的物品最大价值是多少?

和如下情况有区别么?

重量价值数量
物品01151
物品01151
物品13201
物品13201
物品13201
物品24301
物品24301

毫无区别,这就转成了一个01背包问题了,且每个物品只用一次。

改变物品数量为01背包格式

public void testMultiPack1(){
    // 版本一:改变物品数量为01背包格式
    List<Integer> weight = new ArrayList<>(Arrays.asList(1, 3, 4));
    List<Integer> value = new ArrayList<>(Arrays.asList(15, 20, 30));
    List<Integer> nums = new ArrayList<>(Arrays.asList(2, 3, 2));
    int bagWeight = 10;

    for (int i = 0; i < nums.size(); i++) {
        while (nums.get(i) > 1) { // 把物品展开为i
            weight.add(weight.get(i));
            value.add(value.get(i));
            nums.set(i, nums.get(i) - 1);
        }
    }

    int[] dp = new int[bagWeight + 1];
    for(int i = 0; i < weight.size(); i++) { // 遍历物品
        for(int j = bagWeight; j >= weight.get(i); j--) { // 遍历背包容量
            dp[j] = Math.max(dp[j], dp[j - weight.get(i)] + value.get(i));
        }
        System.out.println(Arrays.toString(dp));
    }
}

版本二:改变遍历个数

public void testMultiPack2(){
    // 版本二:改变遍历个数
    int[] weight = new int[] {1, 3, 4};
    int[] value = new int[] {15, 20, 30};
    int[] nums = new int[] {2, 3, 2};
    int bagWeight = 10;

    int[] dp = new int[bagWeight + 1];
    for(int i = 0; i < weight.length; i++) { // 遍历物品
        for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
            // 以上为01背包,然后加一个遍历个数
            for (int k = 1; k <= nums[i] && (j - k * weight[i]) >= 0; k++) { // 遍历个数
                dp[j] = Math.max(dp[j], dp[j - k * weight[i]] + k * value[i]);
            }
            System.out.println(Arrays.toString(dp));
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

还是选择了面包

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值