# 创作灵感 #
最近在准备硕博连读考核,写这篇文章是为了巩固基础知识,记录下来我个人不熟悉或者不会的 “知识+题”,筛选掉一下已经很熟悉的基础知识,实现精华内容的提取。
首先指路:27. 移除元素 | 代码随想录
估计这篇文章对4年后找工作的我也能有帮助(顺利毕业的话)
注:代码较少,思路为主,适合用于面试的复习【后续会整合代码】
目录
1.三数之和
双指针
其实这道题目使用哈希法并不十分合适,因为在去重的操作中有很多细节需要注意,在面试中很难直接写出没有bug的代码。
而且使用哈希法 在使用两层for循环的时候,能做的剪枝操作很有限,虽然时间复杂度是O(n^2),也是可以在leetcode上通过,但是程序的执行时间依然比较长 。
接下来我来介绍另一个解法:双指针法,这道题目使用双指针法 要比哈希法高效一些,那么来讲解一下具体实现的思路。
动画效果如下:

拿这个nums数组来举例,首先将数组排序,然后有一层for循环,i从下标0的地方开始,同时定一个下标left 定义在i+1的位置上,定义下标right 在数组结尾的位置上。
依然还是在数组中找到 abc 使得a + b +c =0,我们这里相当于 a = nums[i],b = nums[left],c = nums[right]。
接下来如何移动left 和right呢, 如果nums[i] + nums[left] + nums[right] > 0 就说明 此时三数之和大了,因为数组是排序后了,所以right下标就应该向左移动,这样才能让三数之和小一些。
如果 nums[i] + nums[left] + nums[right] < 0 说明 此时 三数之和小了,left 就向右移动,才能让三数之和大一些,直到left与right相遇为止。
时间复杂度:O(n^2)。
C++代码代码如下:
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> result;
sort(nums.begin(), nums.end());
// 找出a + b + c = 0
// a = nums[i], b = nums[left], c = nums[right]
for (int i = 0; i < nums.size(); i++) {
// 排序之后如果第一个元素已经大于零,那么无论如何组合都不可能凑成三元组,直接返回结果就可以了
if (nums[i] > 0) {
return result;
}
// 错误去重a方法,将会漏掉-1,-1,2 这种情况
/*
if (nums[i] == nums[i + 1]) {
continue;
}
*/
// 正确去重a方法
if (i > 0 && nums[i] == nums[i - 1]) {
continue;
}
int left = i + 1;
int right = nums.size() - 1;
while (right > left) {
// 去重复逻辑如果放在这里,0,0,0 的情况,可能直接导致 right<=left 了,从而漏掉了 0,0,0 这种三元组
/*
while (right > left && nums[right] == nums[right - 1]) right--;
while (right > left && nums[left] == nums[left + 1]) left++;
*/
if (nums[i] + nums[left] + nums[right] > 0) right--;
else if (nums[i] + nums[left] + nums[right] < 0) left++;
else {
result.push_back(vector<int>{nums[i], nums[left], nums[right]});
// 去重逻辑应该放在找到一个三元组之后,对b 和 c去重
while (right > left && nums[right] == nums[right - 1]) right--;
while (right > left && nums[left] == nums[left + 1]) left++;
// 找到答案时,双指针同时收缩
right--;
left++;
}
}
}
return result;
}
};
- 时间复杂度: O(n^2)
- 空间复杂度: O(1)
2.四数之和
四数之和,和15.三数之和 (opens new window)是一个思路,都是使用双指针法, 基本解法就是在15.三数之和 (opens new window)的基础上再套一层for循环。
但是有一些细节需要注意,例如: 不要判断nums[k] > target 就返回了,三数之和 可以通过 nums[i] > 0 就返回了,因为 0 已经是确定的数了,四数之和这道题目 target是任意值。比如:数组是[-4, -3, -2, -1],target是-10,不能因为-4 > -10而跳过。但是我们依旧可以去做剪枝,逻辑变成nums[k] > target && (nums[k] >=0 || target >= 0)就可以了。
15.三数之和 (opens new window)的双指针解法是一层for循环num[i]为确定值,然后循环内有left和right下标作为双指针,找到nums[i] + nums[left] + nums[right] == 0。
四数之和的双指针解法是两层for循环nums[k] + nums[i]为确定值,依然是循环内有left和right下标作为双指针,找出nums[k] + nums[i] + nums[left] + nums[right] == target的情况,三数之和的时间复杂度是O(n^2),四数之和的时间复杂度是O(n^3) 。
那么一样的道理,五数之和、六数之和等等都采用这种解法。
对于15.三数之和 (opens new window)双指针法就是将原本暴力O(n^3)的解法,降为O(n^2)的解法,四数之和的双指针解法就是将原本暴力O(n^4)的解法,降为O(n^3)的解法。
之前我们讲过哈希表的经典题目:454.四数相加II (opens new window),相对于本题简单很多,因为本题是要求在一个集合中找出四个数相加等于target,同时四元组不能重复。
而454.四数相加II (opens new window)是四个独立的数组,只要找到A[i] + B[j] + C[k] + D[l] = 0就可以,不用考虑有重复的四个元素相加等于0的情况,所以相对于本题还是简单了不少!
3.总结
数组篇
在数组:就移除个元素很难么? (opens new window)中,原地移除数组上的元素,我们说到了数组上的元素,不能真正的删除,只能覆盖。
一些同学可能会写出如下代码(伪代码):
for (int i = 0; i < array.size(); i++) {
if (array[i] == target) {
array.erase(i);
}
}
这个代码看上去好像是O(n)的时间复杂度,其实是O(n^2)的时间复杂度,因为erase操作也是O(n)的操作。
所以此时使用双指针法才展现出效率的优势:通过两个指针在一个for循环下完成两个for循环的工作。
#字符串篇
在字符串:这道题目,使用库函数一行代码搞定 (opens new window)中讲解了反转字符串,注意这里强调要原地反转,要不然就失去了题目的意义。
使用双指针法,定义两个指针(也可以说是索引下标),一个从字符串前面,一个从字符串后面,两个指针同时向中间移动,并交换元素。,时间复杂度是O(n)。
在替换空格 (opens new window)中介绍使用双指针填充字符串的方法,如果想把这道题目做到极致,就不要只用额外的辅助空间了!
思路就是首先扩充数组到每个空格替换成"%20"之后的大小。然后双指针从后向前替换空格。
有同学问了,为什么要从后向前填充,从前向后填充不行么?
从前向后填充就是O(n^2)的算法了,因为每次添加元素都要将添加元素之后的所有元素向后移动。
其实很多数组(字符串)填充类的问题,都可以先预先给数组扩容带填充后的大小,然后在从后向前进行操作。
那么在字符串:花式反转还不够! (opens new window)中,我们使用双指针法,用O(n)的时间复杂度完成字符串删除类的操作,因为题目要删除冗余空格。
在删除冗余空格的过程中,如果不注意代码效率,很容易写成了O(n^2)的时间复杂度。其实使用双指针法O(n)就可以搞定。
主要还是大家用erase用的比较随意,一定要注意for循环下用erase的情况,一般可以用双指针写效率更高!
#链表篇
翻转链表是现场面试,白纸写代码的好题,考察了候选者对链表以及指针的熟悉程度,而且代码也不长,适合在白纸上写。
在链表:听说过两天反转链表又写不出来了? (opens new window)中,讲如何使用双指针法来翻转链表,只需要改变链表的next指针的指向,直接将链表反转 ,而不用重新定义一个新的链表。
思路还是很简单的,代码也不长,但是想在白纸上一次性写出bugfree的代码,并不是容易的事情。
在链表中求环,应该是双指针在链表里最经典的应用,在链表:环找到了,那入口呢? (opens new window)中讲解了如何通过双指针判断是否有环,而且还要找到环的入口。
使用快慢指针(双指针法),分别定义 fast 和 slow指针,从头结点出发,fast指针每次移动两个节点,slow指针每次移动一个节点,如果 fast 和 slow指针在途中相遇 ,说明这个链表有环。
那么找到环的入口,其实需要点简单的数学推理,我在文章中把找环的入口清清楚楚的推理的一遍,如果对找环入口不够清楚的同学建议自己看一看链表:环找到了,那入口呢? (opens new window)。
#N数之和篇
在哈希表:解决了两数之和,那么能解决三数之和么? (opens new window)中,讲到使用哈希法可以解决1.两数之和的问题
其实使用双指针也可以解决1.两数之和的问题,只不过1.两数之和求的是两个元素的下标,没法用双指针,如果改成求具体两个元素的数值就可以了,大家可以尝试用双指针做一个leetcode上两数之和的题目,就可以体会到我说的意思了。
使用了哈希法解决了两数之和,但是哈希法并不适用于三数之和!
使用哈希法的过程中要把符合条件的三元组放进vector中,然后在去去重,这样是非常费时的,很容易超时,也是三数之和通过率如此之低的根源所在。
去重的过程不好处理,有很多小细节,如果在面试中很难想到位。
时间复杂度可以做到O(n^2),但还是比较费时的,因为不好做剪枝操作。
所以这道题目使用双指针法才是最为合适的,用双指针做这道题目才能就能真正体会到,通过前后两个指针不断向中间逼近,在一个for循环下完成两个for循环的工作。
只用双指针法时间复杂度为O(n^2),但比哈希法的O(n^2)效率高得多,哈希法在使用两层for循环的时候,能做的剪枝操作很有限。
在双指针法:一样的道理,能解决四数之和 (opens new window)中,讲到了四数之和,其实思路是一样的,在三数之和的基础上再套一层for循环,依然是使用双指针法。
对于三数之和使用双指针法就是将原本暴力O(n^3)的解法,降为O(n^2)的解法,四数之和的双指针解法就是将原本暴力O(n^4)的解法,降为O(n^3)的解法。
同样的道理,五数之和,n数之和都是在这个基础上累加。
#总结
本文中一共介绍了leetcode上九道使用双指针解决问题的经典题目,除了链表一些题目一定要使用双指针,其他题目都是使用双指针来提高效率,一般是将O(n^2)的时间复杂度,降为 $O(n)$ 。
建议大家可以把文中涉及到的题目在好好做一做,琢磨琢磨,基本对双指针法就不在话下了。

783

被折叠的 条评论
为什么被折叠?



