目录
1 池化层

:物体稍微变动,结果不会变化太多


2x2最大池化写错了,更正如下 (因为是从卷积输出作用过来的)
| 1 | 1 | 0 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 0 | 0 |



2 实现
2.1 最大池化层和平均池化层
在下面的代码中的pool2d函数,我们实现汇聚层的前向传播。 这类似于 6.2节中的corr2d函数。 然而,这里我们没有卷积核,输出为输入中每个区域的最大值或平均值。
import torch
from torch import nn
from d2l import torch as d2l
def pool2d(X, pool_size, mode='max'):
p_h, p_w = pool_size
Y = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))
for i in range(Y.shape[0]):
for j in range(Y.shape[1]):
if mode == 'max':
Y[i, j] = X[i: i + p_h, j: j + p_w].max()
elif mode == 'avg':
Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
return Y
我们可以构建 图6.5.1中的输入张量X,验证二维最大汇聚层的输出。
X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
pool2d(X, (2, 2))
tensor([[4., 5.],
[7., 8.]])
此外,我们还可以验证平均汇聚层。
pool2d(X, (2, 2), 'avg')
tensor([[2., 3.],
[5., 6.]])
2.2 填充和步幅
与卷积层一样,汇聚层也可以改变输出形状。和以前一样,我们可以通过填充和步幅以获得所需的输出形状。 下面,我们用深度学习框架中内置的二维最大汇聚层,来演示汇聚层中填充和步幅的使用。 我们首先构造了一个输入张量X,它有四个维度,其中样本数和通道数都是1。
X = torch.arange(16, dtype=torch.float32).reshape((1, 1, 4, 4))
X
tensor([[[[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[12., 13., 14., 15.]]]])
默认情况下,深度学习框架中的步幅与汇聚窗口的大小相同。 因此,如果我们使用形状为(3, 3)的汇聚窗口,那么默认情况下,我们得到的步幅形状为(3, 3)。
pool2d = nn.MaxPool2d(3)
pool2d(X)
tensor([[[[10.]]]])
填充和步幅可以手动设定。
pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)
当然,我们可以设定一个任意大小的矩形汇聚窗口,并分别设定填充和步幅的高度和宽度。
pool2d = nn.MaxPool2d((2, 3), stride=(2, 3), padding=(0, 1))
pool2d(X)
2.3 多个通道
在处理多通道输入数据时,汇聚层在每个输入通道上单独运算,而不是像卷积层一样在通道上对输入进行汇总。 这意味着汇聚层的输出通道数与输入通道数相同。 下面,我们将在通道维度上连结张量X和X + 1,以构建具有2个通道的输入。
X = torch.cat((X, X + 1), 1)
X
tensor([[[[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[12., 13., 14., 15.]],
[[ 1., 2., 3., 4.],
[ 5., 6., 7., 8.],
[ 9., 10., 11., 12.],
[13., 14., 15., 16.]]]])
如下所示,汇聚后输出通道的数量仍然是2。
pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)
tensor([[[[ 5., 7.],
[13., 15.]],
[[ 6., 8.],
[14., 16.]]]])
2.4 小结
-
对于给定输入元素,最大汇聚层会输出该窗口内的最大值,平均汇聚层会输出该窗口内的平均值。
-
汇聚层的主要优点之一是减轻卷积层对位置的过度敏感。
-
我们可以指定汇聚层的填充和步幅。
-
使用最大汇聚层以及大于1的步幅,可减少空间维度(如高度和宽度)。
-
汇聚层的输出通道数与输入通道数相同。
本文阐述了池化层在深度学习中的关键作用,涉及最大池化、平均池化操作,以及填充和步幅对输出形状的影响。
757

被折叠的 条评论
为什么被折叠?



