import h5py
import numpy as np
import matplotlib.cm as cm
import matplotlib.colors as mcolors
import matplotlib.ticker as mticker
import matplotlib.pyplot as plt
from cartopy.io.shapereader import Reader
import cartopy.crs as ccrs
import cartopy.feature as cfeature
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
import pandas as pd
def make_Rr_cmap(levels):
'''制作降水的colormap.'''
nbin = len(levels) - 1
cmap = cm.get_cmap('jet', nbin)
norm = mcolors.BoundaryNorm(levels, nbin)
return cmap, norm
#数据处理
def data_clean(path,extent):
with h5py.File(str(path), 'r') as f:
lon = pd.DataFrame(f['NS/Longitude'][:])
lat = pd.DataFrame(f['NS/Latitude'][:])
surfacePrecipitation = pd.DataFrame(f['NS/surfPrecipTotRate'][:])
surfacePrecipitation.replace(-9999.9,np.nan)
time = str(path)[40:64]
lonmin, lonmax, latmin, latmax = extent
mask = (lon >= lonmin) & (lon <= lonmax) & (lat >= latmin) & (lat <= latmax)
x = pd.DataFrame(mask)
lon_s = lon[x]
lat_s = lat[x]
spv_s = surfacePrecipitation[x]
return lon_s,lat_s,spv_s,time
extent =[105,112,25,32]
path = r"D:\桌面\CMB样本\2B.GPM.DPRGMI.CORRA2018.20140703-S073130-E090403.001955.V06A.HDF5"
lon_s,lat_s,spv_s,time = data_clean(path,extent)
#画图
levels_Rr = [0.1, 0.5, 1.0, 2.0, 3.0, 5.0, 10.0, 15.0, 20.0, 25]
cmap_Rr, norm_Rr = make_Rr_cmap(levels_Rr)
extents =[106,111,26,31]
proj = ccrs.PlateCarree()
fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection=proj)
ax.add_feature(cfeature.LAND.with_scale('50m'))
ax.xaxis.set_minor_locator(mticker.AutoMinorLocator(0.25))
ax.yaxis.set_minor_locator(mticker.AutoMinorLocator(0.25))
ax.xaxis.set_major_formatter(LongitudeFormatter(0.5))
ax.yaxis.set_major_formatter(LatitudeFormatter(0.5))
ax.set(xlim=(extents[0], extents[1]),ylim=(extents[-2], extents[-1]))
ax.tick_params(labelsize='large')
china = Reader(r"D:\桌面\bou2_4l.dbf").geometries()
ax.add_geometries(china, ccrs.PlateCarree(),
facecolor='none', edgecolor='black', zorder=0,linewidth=1.5)
river = Reader(r"D:\1级河流.shp").geometries()
ax.add_geometries(river, ccrs.PlateCarree(), facecolor='none', edgecolor='RoyalBlue', linewidth=1,zorder=0)
im = ax.contourf(
lon_s, lat_s, spv_s, levels_Rr,
cmap=cmap_Rr, norm=norm_Rr, extend='both', transform=proj,alpha=0.8
)
plt.scatter(lon_s, lat_s,c='k',s=0.5)
ax.grid()
cb = fig.colorbar(im, ax=ax, ticks=levels_Rr)
cb.set_label('Rain Rate (mm/hr)', fontsize=15)
cb.ax.tick_params(labelsize=15)
ax.set_xticks(np.arange(extents[0], extents[1]+1, 1), crs=proj)
ax.set_yticks(np.arange(extents[-2], extents[-1]+1, 1), crs=proj)
ax.set_title(f'SurfPrecipTotRate on {time}', fontsize=20,pad=20)
plt.tick_params(labelsize=15)
plt.show()
出图: