目录
一、455.分发饼干
贪心算法一般分为如下四步:
- 将问题分解为若干个子问题
- 找出适合的贪心策略
- 求解每一个子问题的最优解
- 将局部最优解堆叠成全局最优解
假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。
对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。
示例 1:
- 输入: g = [1,2], s = [1,2,3]
- 输出: 2
- 解释:你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。你拥有的饼干数量和尺寸都足以让所有孩子满足。所以你应该输出2.
这里的局部最优就是大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个,全局最优就是喂饱尽可能多的小孩。
可以尝试使用贪心策略,先将饼干数组和小孩数组排序。
然后从后向前遍历小孩数组,用大饼干优先满足胃口大的,并统计满足小孩数量。
如图:
优先考虑小胃口(遍历饼干数组)
class Solution {
public int findContentChildren(int[] g, int[] s) {
//优先考虑小胃口
Arrays.sort(g);
Arrays.sort(s);
int startg=0;
int count=0;
//遍历饼干数组
for(int i=0;i<s.length&&startg<g.length;i++)
{
if(s[i]>=g[startg])
{
startg++;
count++;
}
}
return count;
}
}
优先考虑大胃口(遍历小孩数组)
class Solution {
public int findContentChildren(int[] g, int[] s) {
//优先考虑小胃口
Arrays.sort(g);
Arrays.sort(s);
int index=s.length-1;
int count=0;
//遍历小孩数组
for(int i=g.length-1;i>=0&&index>=0;i--)
{
if(s[index]>=g[i])
{
index--;
count++;
}
}
return count;
}
}
二、376. 摆动序列
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。
例如, [1,7,4,9,2,5] 是一个摆动序列,因为差值 (6,-3,5,-7,3) 是正负交替出现的。
示例 1:
- 输入: [1,7,4,9,2,5]
- 输出: 6
- 解释: 整个序列均为摆动序列。
示例 2:
- 输入: [1,17,5,10,13,15,10,5,16,8]
- 输出: 7
- 解释: 这个序列包含几个长度为 7 摆动序列,其中一个可为[1,17,10,13,10,16,8]。
思路1(贪心解法)
用示例二来举例,如图所示:
局部最优:删除单调坡度上的节点(不包括单调坡度两端的节点),那么这个坡度就可以有两个局部峰值。
整体最优:整个序列有最多的局部峰值,从而达到最长摆动序列。
局部最优推出全局最优,并举不出反例,那么试试贪心!
(为方便表述,以下说的峰值都是指局部峰值)
实际操作上,其实连删除的操作都不用做,因为题目要求的是最长摆动子序列的长度,所以只需要统计数组的峰值数量就可以了(相当于是删除单一坡度上的节点,然后统计长度)
这就是贪心所贪的地方,让峰值尽可能的保持峰值,然后删除单一坡度上的节点。
class Solution {
public int wiggleMaxLength(int[] nums) {
if (nums.length <= 1) {
return nums.length;
}
//当前差值
int curDiff = 0;
//上一个差值
int preDiff = 0;
int count = 1;
for (int i = 1; i < nums.length; i++) {
//得到当前差值
curDiff = nums[i] - nums[i - 1];
//如果当前差值和上一个差值为一正一负
//等于0的情况表示初始时的preDiff
if ((curDiff > 0 && preDiff <= 0) || (curDiff < 0 && preDiff >= 0)) {
count++;
preDiff = curDiff;
}
}
return count;
}
}
思路2(动态规划)
考虑用动态规划的思想来解决这个问题。
很容易可以发现,对于我们当前考虑的这个数,要么是作为山峰(即nums[i] > nums[i-1]),要么是作为山谷(即nums[i] < nums[i - 1])。
- 设dp状态
dp[i][0]
,表示考虑前i个数,第i个数作为山峰的摆动子序列的最长长度 - 设dp状态
dp[i][1]
,表示考虑前i个数,第i个数作为山谷的摆动子序列的最长长度
则转移方程为:
dp[i][0] = max(dp[i][0], dp[j][1] + 1)
,其中0 < j < i
且nums[j] < nums[i]
,表示将nums[i]接到前面某个山谷后面,作为山峰。dp[i][1] = max(dp[i][1], dp[j][0] + 1)
,其中0 < j < i
且nums[j] > nums[i]
,表示将nums[i]接到前面某个山峰后面,作为山谷。
初始状态:
由于一个数可以接到前面的某个数后面,也可以以自身为子序列的起点,所以初始状态为:dp[0][0] = dp[0][1] = 1
。
// DP
class Solution {
public int wiggleMaxLength(int[] nums) {
// 0 i 作为波峰的最大长度
// 1 i 作为波谷的最大长度
int dp[][] = new int[nums.length][2];
dp[0][0] = dp[0][1] = 1;
for (int i = 1; i < nums.length; i++){
//i 自己可以成为波峰或者波谷
dp[i][0] = dp[i][1] = 1;
for (int j = 0; j < i; j++){
if (nums[j] > nums[i]){
// i 是波谷
dp[i][1] = Math.max(dp[i][1], dp[j][0] + 1);
}
if (nums[j] < nums[i]){
// i 是波峰
dp[i][0] = Math.max(dp[i][0], dp[j][1] + 1);
}
}
}
return Math.max(dp[nums.length - 1][0], dp[nums.length - 1][1]);
}
}
三、53. 最大子序和
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例: 输入: [-2,1,-3,4,-1,2,1,-5,4] 输出: 6 解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
贪心算法
如果 -2 1 在一起,计算起点的时候,一定是从1开始计算,因为负数只会拉低总和,这就是贪心贪的地方!
局部最优:当前“连续和”为负数的时候立刻放弃,从下一个元素重新计算“连续和”,因为负数加上下一个元素 “连续和”只会越来越小。
全局最优:选取最大“连续和”
局部最优的情况下,并记录最大的“连续和”,可以推出全局最优。
从代码角度上来讲:遍历nums,从头开始用count累积,如果count一旦加上nums[i]变为负数,那么就应该从nums[i+1]开始从0累积count了,因为已经变为负数的count,只会拖累总和。
class Solution {
public int maxSubArray(int[] nums) {
if(nums.length==1)
return nums[0];
int sum = Integer.MIN_VALUE;
int count = 0;
for(int i=0;i<nums.length;i++)
{
count+=nums[i];
sum=Math.max(sum,count);
if(count<=0)
count=0;
}
return sum;
}
}