上海浦语大模型

一、第一课

二、第二课

1.1、环境准备

bash # 请每次使用 jupyter lab 打开终端时务必先执行 bash 命令进入 bash 中
bash /root/share/install_conda_env_internlm_base.sh internlm-demo  # 执行该脚本文件来安装项目实验环境

然后使用以下命令激活环境

conda activate internlm-demo

并在环境中安装运行 demo 所需要的依赖:

# 升级pip
python -m pip install --upgrade pip
pip install modelscope==1.9.5
pip install transformers==4.35.2
pip install streamlit==1.24.0
pip install sentencepiece==0.1.99
pip install accelerate==0.24.1

1.2模型下载

方式一

InternStudio平台的 share 目录下已经为我们准备了全系列的 InternLM 模型,所以我们可以直接复制即可。使用如下命令复制:

mkdir -p /root/model/Shanghai_AI_Laboratory
cp -r /root/share/temp/model_repos/internlm-chat-7b /root/model/Shanghai_AI_Laboratory

1.3准备代码

首先 clone 代码,在 /root 路径下新建 code 目录,然后切换路径, clone 代码:

cd /root/code
git clone https://gitee.com/internlm/InternLM.git

切换 commit 版本,与教程 commit 版本保持一致,可以让大家更好的复现:

cd InternLM
git checkout 3028f07cb79e5b1d7342f4ad8d11efad3fd13d17

将 /root/code/InternLM/web_demo.py中 29 行和 33 行的模型更换为本地的 /root/model/Shanghai_AI_Laboratory/internlm-chat-7b。

1.4终端运行

我们可以在 /root/code/InternLM 目录下新建一个 cli_demo.py 文件,将以下代码填入其中:

见cli_demo.py文件

然后在终端运行以下命令,即可体验 InternLM-Chat-7B 模型的对话能力。对话效果如下所示:

python /root/code/InternLM/cli_demo.py

1.5web端应用

注意:需要暂停前面对话,资源有限

我们切换到 VScode 中,运行 /root/code/InternLM 目录下的 web_demo.py 文件,输入以下命令后,查看本教程5.2配置本地端口后,将端口映射到本地。在本地浏览器输入 http://127.0.0.1:6006 即可。

bash
conda activate internlm-demo  # 首次进入 vscode 会默认是 base 环境,所以首先切换环境
cd /root/code/InternLM
streamlit run web_demo.py --server.address 127.0.0.1 --server.port 6006

要在浏览器打开http://127.0.0.1:6006页面后,模型才会加载,如下图所示:

1.6Lagent 智能体工具调用 Demo

1 环境准备

2 模型下载

3 Lagent 安装

首先切换路径到 /root/code 克隆 lagent 仓库,并通过 pip install -e . 源码安装 Lagent

cd /root/code
git clone https://gitee.com/internlm/lagent.git
cd /root/code/lagent
git checkout 511b03889010c4811b1701abb153e02b8e94fb5e # 尽量保证和教程commit版本一致
pip install -e . # 源码安装

4修改代码

由于代码修改的地方比较多,大家直接将 /root/code/lagent/examples/react_web_demo.py 内容替换为以下代码

详细见教程

5Demo 运行

streamlit run /root/code/lagent/examples/react_web_demo.py --server.address 127.0.0.1 --server.port 6006

用同样的方法我们依然切换到 VScode 页面,运行成功后,查看本教程5.2配置本地端口后,将端口映射到本地。在本地浏览器输入 http://127.0.0.1:6006 即可。

我们在 Web 页面选择 InternLM 模型,等待模型加载完毕后,输入数学问题 已知 2x+3=13,求x ,此时 InternLM-Chat-7B 模型理解题意生成解此题的 Python 代码,Lagent 调度送入 Python 代码解释器求出该问题的解。

1.7浦语·灵笔图文理解创作 Demo

1 环境准备

2 模型下载

pip install lit cmake

pip install transformers==4.33.1 timm==0.4.12 sentencepiece==0.1.99 gradio==3.44.4 markdown2==2.4.10 xlsxwriter==3.1.2 einops accelerate

3代码准备

在 /root/code git clone InternLM-XComposer 仓库的代码

cd /root/code git clone <https://gitee.com/internlm/InternLM-XComposer.git> cd /root/code/InternLM-XComposer git checkout 3e8c79051a1356b9c388a6447867355c0634932d # 最好保证和教程的 commit 版本一致

4终端运行

二、基于 InternLM 和 LangChain 搭建你的知识库

三、XTuner 大模型单卡低成本微调实战 

四、LMDeploy 的量化和部署

五、OpenCompass 评测

### 关于书生·浦大模型 书生·浦是由上海人工智能实验室推出的大规模预训练语言模型,其设计目标是在多个自然语言处理任务上表现出卓越性能的同时保持高效性和易用性[^1]。该模型不仅支持多种应用场景下的开箱即用功能,还提供了灵活的微调能力以适应特定需求。 #### 模型使用方法 为了使用书生·浦大模型,可以通过指定 `local_llm_path` 参数加载本地已有的模型文件或者通过提供 Hugging Face 平台上的模型名称来自动下载并加载远程模型。例如可以使用的模型名有 `"internlm/internlm2-chat-7b"` 或者 `"internlm/internlm2-chat-20b"` 等。此外,在实际部署前需确保设置合理的参数如 `local_llm_max_text_length` 来控制输入的最大长度以便优化运行效率和效果。 对于初次使用者来说,准备环境的第一步可能涉及创建目录结构以及复制预先获取到的模型仓库至相应位置的操作命令如下所示: ```bash mkdir -p /root/model/Shanghai_AI_Laboratory && \ cp -r /root/share/temp/model_repos/internlm-chat-7b /root/model/Shanghai_AI_Laboratory/ ``` 上述脚本片段展示了如何构建存储路径并将 internlm-chat-7b 版本的具体实现迁移过去的过程[^2]。 #### 微调与扩展支持 值得一提的是,除了基础的服务外,书生·浦也兼容其他主流框架内的调整流程和技术方案,比如但不限于 InternLM, Llama, Qwen (通义千问), BaiChuan 及 ChatGLM 这些知名系列的产品线均被纳入考虑范围之内;并且能够很好地融入像 HuggingFace 和 ModelScope 那样的开放生态系统之中去寻找更多可能性[^3]。 另外值得注意的一点在于围绕着这些先进工具所建立起来的标准评估机制同样值得称赞——它由国内权威机构主导制定而成,并得到了国际巨头 Meta 的正式背书成为唯一推荐给用户的本土化考核标准之一,涵盖了上百套测试集合总计五十多万道试题用于全面衡量各项指标表现情况[^4]。 ### 提供的相关资源链接 虽然这里无法直接给出具体的文档地址或安装包下载连接,但是可以根据前面提到的信息自行前往官方网站查询最新版本资料详情页面获取进一步指导说明材料。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值