「深度学习」门控循环单元GRU

一、梯度消失问题

  • 梯度消失

    基础的 RNN 模型不善于处理长期依赖关系,有很多局部影响,很难调整自己前面的计算。y^{<i>} 仅仅受自己附近的值影响。

  • 解决方法:GRU 或 LSTM

  • 梯度爆炸

    反向传播时,随着层数增多,梯度不仅可能指数型下降,还有可能指数型上升 —— 会导致参数过大,网络崩溃

    解决方法:梯度修剪 —— 观察梯度向量,若大于某个阈值,则放缩梯度向量,保证其不会过大

二、GRU

目的:使隐藏层更好地捕捉深层连接,改善梯度消失的问题

1. RNN 单元

2. 简化版 GRU 单元

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值