论文地址:https://arxiv.org/abs/2311.04917
1.概论
尽管大量的研究致力于虚假新闻检测,这些研究普遍存在两大局限性:其一,它们往往默认所有新闻文本均出自人类之手,忽略了机器深度改写乃至生成的真实新闻日益增长的现象;其二,它们倾向于将所有机器制造的新闻一概视作虚假信息,未能细致区分其中的真实性与欺骗性。 因此,论文对在各种场景下训练的假新闻探测器进行了深度研究。得出以下重要结论:
- 针对人类所写的文章进行训练的探测器在检测机器生成的假新闻方面表现出色,但反之不成立
- 由于检测器对机器生成文本的偏差(Su et al.,2023a),它们应该在比测试集更低的机器生成新闻比率的数据集上进行训练。
2.方法
为