单分子科学原理与模型笔记 Part IV

Chapter VIII Single Molecule Mechanics

Single-molecule Springs: Origins of Molecular elasticity

在这里插入图片描述

对于抛物线形势能曲线,有:
V ( R ) ≈ V ( R 0 ) + ( 1 / / 2 ) V ′ ′ ( R 0 ) ( R − R 0 ) 2 V(R)\approx V(R_0) + (1//2)V''(R_0)(R-R_0)^2 V(R)V(R0)+(1//2)V′′(R0)(RR0)2
V ( x ) ≈ ( 1 / 2 ) γ 0 x 2 V(x)\approx (1/2)\gamma_0x^2 V(x)(1/2)γ0x2

若拉力 f f f 作用在分子上使其发生拉伸 d x dx dx,则有:
d W = − f d x dW = -fdx dW=fdx

等于势能改变量:
− f d x = d V = V ′ ( x ) d x -fdx = dV = V'(x)dx fdx=dV=V(x)dx

可推得: f = − V ′ ( x ) f = -V'(x) f=V(x)

Hooke 定律:
f = − V ′ ( x ) = − γ 0 x f = -V'(x) = -\gamma_0 x f=V(x)=γ0x

生物大分子大多是链状的大型聚合物。

Thermal motion comes into play

热运动带来的力:
p = N k B T / v p = Nk_BT/v p=NkBT/v

对处于周围分子环境中的一个分子,它的总能不再固定。而是变为一个概率正比于玻尔兹曼因子 e − β E i ( x ) e^{-\beta E_i(x)} eβEi(x) 的涨落量。

在特定的状态 i i i,其恢复力 (restoring force) 为:
f i ( x ) = − d E i ( x ) d x f_i(x) = -\frac{dE_i(x)}{dx} fi(x)=dxdEi(x)

分子处于状态 i i i 的概率为:
w i ( x ) = e β E i ( x ) / ∑ i e − β E i ( x ) w_i(x) = e^{\beta E_i}(x)/\sum\limits_i e^{-\beta E_i(x)} wi(x)=eβEi(x)/ieβEi(x)

平均的 restoring force 为:
f = − ∑ i w i ( x ) d E i ( x ) d x = − d G d x f = -\sum\limits_i w_i(x)\frac{dE_i(x)}{dx} = -\frac{dG}{dx} f=iwi(x)dxdEi(x)=dxdG

可推得:
e − β G ( x ) = ∑ i e − β E i ( x ) e^{-\beta G(x)} = \sum\limits_i e^{-\beta E_i(x)} eβG(x)=ieβEi(x)

这样就有了自由能 G ( x ) G(x) G(x) 的定义。

再结合 w ( x ) = ∑ i e − β E i ( x ) ∑ i , x e − β E i ( x ) w(x) = \frac{\sum\limits_i e^{-\beta E_i(x)}}{\sum\limits_{i, x} e^{-\beta E_i(x)}} w(x)=i,xeβEi(x)ieβEi(x)

因此有:
G ( x ) = − k B T ln ⁡ w ( x ) + c o n s t G(x) = -k_BT\ln w(x) + const G(x)=kBTlnw(x)+const

这与拉伸量 x x x 的零力、平衡概率分布对的分子力学响应相联系。注意,对于一维粒子,自由能就是势能。

The freely jointed chain model

freely jointed chain (FJC): 自由链节链”或“自由连接链”。一种理想化的聚合物链模型,链节之间可以自由旋转而没有任何限制。有 L = N l L=Nl L=Nl,两个末端在互相周围涨落且有:
⟨ x ⃗ ⟩ = ∑ i ⟨ r i ⟩ = 0 \langle \vec{x}\rangle = \sum\limits_{i}\langle r_i\rangle = 0 x =iri=0

每个 r i ⃗ \vec{r_i} ri 相互独立,根据中心极限定理它们的分布遵循均值为 0,方差如下的 Gaussian 分布:
⟨ σ x 2 ⟩ = ⟨ σ y 2 ⟩ = ⟨ σ z 2 ⟩ = N l 2 3 \langle \sigma_x^2\rangle = \langle \sigma_y^2\rangle = \langle \sigma_z^2\rangle = N\frac{l^2}{3} σx2=σy2=σz2=N3l2
⟨ σ ⟩ = ⟨ σ x 2 ⟩ + ⟨ σ y 2 ⟩ + ⟨ σ z 2 ⟩ = N l 2 = L l \langle \sigma\rangle = \langle \sigma_x^2\rangle + \langle \sigma_y^2\rangle + \langle \sigma_z^2\rangle = Nl^2 = Ll σ=σx2+σy2+σz2=Nl2=Ll

末端-末端距离遵循如下概率分布:
w ( x ) = ( 3 2 π N l 2 ) 1 / 2 e − 3 x 2 2 N l 2 w(x) = (\frac{3}{2\pi Nl^2})^{1/2}e^{-\frac{3x^2}{2Nl^2}} w(x)=(2πNl23)1/2e2Nl23x2

从而自由能,力,力常数:
G ( x ) = 3 k B T x 2 2 N l 2 + c o n s t G(x) = \frac{3k_BTx^2}{2Nl^2} + const G(x)=2Nl23kBTx2+const
f ( x ) = − 3 k B T x N l 2 f(x) = -\frac{3k_BTx}{Nl^2} f(x)=Nl23kBTx
γ = 3 k B T N l 2 \gamma = \frac{3k_BT}{Nl^2} γ=Nl23kBT

R g = N 6 l R_g = \sqrt{\frac{N}{6}}l Rg=6N l

How Does Temperature Affect a Rubber Band

在这里插入图片描述

对于一个恢复力做的正功 d W = f d x dW = fdx dW=fdx,满足:
d W = − d E + d Q dW = -dE + dQ dW=dE+dQ

根据 d G = − d W dG = -dW dG=dW,可得:
d G = d E − d Q dG = dE - dQ dG=dEdQ

系统平均能量:
E = ∑ i w i ( x ) E i ( x ) E = \sum\limits_i w_i(x)E_i(x) E=iwi(x)Ei(x)

再结合 e − β G = ∑ i e − β E i e^{-\beta G} = \sum\limits_ie^{-\beta E_i} eβG=ieβEi 有:
d Q = d E − d G = ∑ i ( E i d w i + w i d E i ) + 1 β d ln ⁡ ∑ i e − β E i dQ = dE - dG = \sum\limits_i(E_idw_i + w_idE_i) + \frac{1}{\beta}d\ln\sum\limits_i e^{-\beta E_i} dQ=dEdG=i(Eidwi+widEi)+β1dlnieβEi

引入熵:
S = k B ∑ i w i ln ⁡ w i S = k_B\sum\limits_i w_i\ln w_i S=kBiwilnwi

可见, d Q = T d S dQ = TdS dQ=TdS。推导方法:对上式微分,与 ∑ i d w i \sum_i dw_i idwi 成正比的项都为 0,因为 ∑ i d w i \sum_i dw_i idwi 必然为常数 1。

假定所有 w i w_i wi 都相等, Ω = 1 w i \Omega = \frac{1}{w_i} Ω=wi1 为状态 i i i 的微观状态数,那么:
S = k B ln ⁡ Ω S = k_B \ln \Omega S=kBlnΩ

注意到:
d G = d E − T d S = d ( E − T S ) dG = dE - TdS = d(E - TS) dG=dETdS=d(ETS)

从而可将 G G G 表达为:
d G ( x ) = E ( x ) − T S ( x ) dG(x) = E(x) - TS(x) dG(x)=E(x)TS(x)

那么恢复力:
f ( x ) = − d G ( x ) d x = − d E ( x ) d x + T d S ( x ) d x f(x) = -\frac{dG(x)}{dx} = -\frac{dE(x)}{dx} + \frac{TdS(x)}{dx} f(x)=dxdG(x)=dxdE(x)+dxTdS(x)

T d S ( x ) d x \frac{TdS(x)}{dx} dxTdS(x) 可称为熵力 (Entropic Force)。

熵力的例子:

  • 随机聚合物 (random polymer) 的恢复力
  • 理想气体施加在活塞上的压力。

THERMODYNAMICS AND KINETICS OF MECHANICALLY RUPTURED BONDS

在这里插入图片描述

如图,总自由能为:
G ~ ( X , x ) = G ( x ) + γ ( X − x ) 2 / 2 \tilde{G}(X, x) = G(x) + \gamma(X-x)^2/2 G~(X,x)=G(x)+γ(Xx)2/2

stiff trap 近似下 x ≈ X ⇒ G ~ ( X , x ) ≈ G ( x ) x\approx X \Rightarrow \tilde{G}(X, x) \approx G(x) xXG~(X,x)G(x)

而事实上:
G ~ ( X , x ) = G ( x ) + γ X 2 / 2 − γ X x + γ x 2 / 2 \tilde{G}(X, x) = G(x) + \gamma X^2/2 - \gamma Xx + \sout{\gamma x^2/2} G~(X,x)=G(x)+γX2/2γXx+γx2/2

soft pulling 意味着分子的刚性远强于 trap 的:
G ( x ) = γ 0 x 2 / 2 ,   γ 0 ≫ γ G(x) = \gamma_0x^2/2,\ \gamma_0\gg \gamma G(x)=γ0x2/2, γ0γ

扔掉小量,得到近似:
G ~ ( X , x ) ≈ G ( x ) − f x + γ X 2 / 2 \tilde{G}(X, x) \approx G(x) - fx + \gamma X^2/2 G~(X,x)G(x)fx+γX2/2

其中 f = γ X f = \gamma X f=γX。分子面临着和 x x x 有关的势函数:
G f ( x ) = G ( x ) − f x G_f(x) = G(x) - fx Gf(x)=G(x)fx

其中 − f x -fx fx 类似于重力势能 − m g h -mgh mgh f = X γ f=X\gamma f=Xγ 为常数。拉伸量 x x x 对应的概率分布为:
w f ( x ) = A e − β G f ( x ) w_f(x) = Ae^{-\beta G_f(x)} wf(x)=AeβGf(x)

这个分布的最大值在 x m x_m xm 处达到,满足:
d G f ( x m ) d x = G ′ ( x m ) − f = 0 \frac{dG_f(x_m)}{dx} = G'(x_m) - f = 0 dxdGf(xm)=G(xm)f=0

f = G ′ ( x m ) f = G'(x_m) f=G(xm) 非负,因为这里 f f f 就是作用在分子上的力,它描述了最可能的拉伸量涨落。实际可以测到的是平均位置:
⟨ x ⟩ = ∫ d x x w f ( x ) \langle x\rangle = \int dx xw_f(x) x=dxxwf(x)

在这里插入图片描述

考虑图示过程:
m e t a s t a b l e c o m p l e x → k ( f ) f r a g m e n t s metastable complex \overset{k(f)}{\rightarrow} fragments metastablecomplexk(f)fragments

根据 TST:
k ( f ) = v e − Δ G ( f ) k B T k(f) = ve^{-\frac{\Delta G(f)}{k_BT}} k(f)=vekBTΔG(f)

结合:
Δ G ( f ) ≈ Δ G ( 0 ) − f Δ x \Delta G(f)\approx \Delta G(0) - f\Delta x ΔG(f)ΔG(0)fΔx

得到 Eyring-Zhurkov-Bell 公式:
k ( f ) = k ( 0 ) e f Δ x k B T k(f) = k(0)e^{\frac{f\Delta x}{k_BT}} k(f)=k(0)ekBTfΔx

Slip Bonds vs Catch Bonds

前面得到的 Eyring-Zhurkov-Bell 公式 k ( f ) = k ( 0 ) e f Δ x k B T k(f) = k(0)e^{\frac{f\Delta x}{k_BT}} k(f)=k(0)ekBTfΔx 告诉我们:速率随力指数增长。但有例外,势垒随力增加,也就是速率随力减小,这称为 catch bond。常以互锁形式出现:
在这里插入图片描述
在这里插入图片描述

1-D 模型不适用,改用二维:
G ( x , y ) = − k B T ln ⁡ w ( x , y ) + c o n s t G(x, y) = -k_BT\ln w(x, y) + const G(x,y)=kBTlnw(x,y)+const

力变为:
G f ( x , y ) = G ( x , y ) − f x G_f(x, y) = G(x, y) - fx Gf(x,y)=G(x,y)fx

变量 y y y 并不与机械力 f f f 耦合。

Force-induced Unfolding And Other Conformational Transitions Influenced By Forces

在这里插入图片描述

Extension to Other Scenarios: the Nanopore Experiments

如果力是电场 E E E 带来的,假定 E E E 是常电场,作用方向为 z z z 轴,那么相互作用能为:
− E ∑ i q i z i -E\sum\limits_i q_iz_i Eiqizi

f = ∑ i q i f = \sum\limits_i q_i f=iqi,定义有效坐标 x = ∑ i q i z i ∑ i q i x = \frac{\sum\limits_i q_iz_i}{\sum\limits_i q_i} x=iqiiqizi

则相互作用能还是可以表达为:
− f x -fx fx

Elastic Response of A Freely Jointed Chain Beyond Hooke’s Law

虎克定律 f = − 3 k B T x n l 2 f = -\frac{3k_BTx}{nl^2} f=nl23kBTx 仅在形变量远小于充分拉伸分子长度时有效。

Beyond Hooke’s Law : the Chain Partition Function

FJC random walker 的位置 r i ,   i = 0 , 1 , … \mathbf{r_i},\ i=0,1,\dots ri, i=0,1, 满足 ∣ r i − r i − 1 ∣ = l |\mathbf{r_i} - \mathbf{r_{i-1}}|=l riri1=l。认为 FJC 链没有内能,总能就是外力做功的结果:
E ( f , r 0 , … , r n ) = − f ( r n − r 0 ) E(\mathbf{f}, \mathbf{r_0},\dots, \mathbf{r_n}) = -\mathbf{f}(\mathbf{r_n} - \mathbf{r_0}) E(f,r0,,rn)=f(rnr0)

平均链拉伸课表达为:
⟨ r n − r 0 ⟩ = ∑ c o n f i g u r a t i o n ( r n − r 0 ) e β f ( r n − r 0 ) ∑ c o n f i g u r a t i o n e β f ( r n − r 0 ) \langle \mathbf{r_n} - \mathbf{r_0}\rangle = \frac{\sum\limits_{configuration}(\mathbf{r_n} - \mathbf{r_0})e^{\beta\mathbf{f}(\mathbf{r_n} - \mathbf{r_0})}}{\sum\limits_{configuration}e^{\beta\mathbf{f}(\mathbf{r_n} - \mathbf{r_0})}} rnr0=configurationeβf(rnr0)configuration(rnr0)eβf(rnr0)

引入链配分函数:
q = ∑ c o n f i g u r a t i o n e β f ( r n − r 0 ) q = \sum\limits_{configuration}e^{\beta\mathbf{f}(\mathbf{r_n} - \mathbf{r_0})} q=configurationeβf(rnr0)

有:
⟨ r n − r 0 ⟩ = 1 q β d q d f = k B T d ln ⁡ q d f \langle \mathbf{r_n} - \mathbf{r_0}\rangle = \frac{1}{q\beta}\frac{dq}{d\mathbf{f}} = k_BT\frac{d\ln q}{d\mathbf{f}} rnr0=1dfdq=kBTdfdlnq

Beyond Hooke’s Law : Mean Extension vs Force
若使用积分计算配分函数 ( l i = r i − r i − 1 ,   r n − r 0 = l 1 + … l n l_i = r_i - r_{i-1},\ r_n-r_0 = l_1 + \dots l_n li=riri1, rnr0=l1+ln):
q = C ∫ d 3 r 0 d 3 l 1 … d 3 l n e β f ( l 1 + ⋯ + l n ) = C V [ ∫ d 3 l exp ⁡ ( β f ) ] n q = C\int d^3r_0 d^3 l_1\dots d^3 l_n e^{\beta\mathbf{f}(\mathbf{l_1} + \dots + \mathbf{l_n})} = CV[\int d^3\mathbf{l}\exp(\beta\mathbf{f})]^n q=Cd3r0d3l1d3lneβf(l1++ln)=CV[d3lexp(βf)]n

其中有 V = ∫ d 3 d r 0 V = \int d^3d\mathrm{r_0} V=d3dr0

变换坐标系 l = ( ∣ l ∣ , θ , ϕ ) l = (|\mathbf{l}|, \theta, \phi) l=(l,θ,ϕ),得到:
l x = l sin ⁡ θ cos ⁡ ϕ l_x = l\sin\theta\cos\phi lx=lsinθcosϕ
l y = l sin ⁡ θ sin ⁡ ϕ l_y = l\sin\theta\sin\phi ly=lsinθsinϕ
l z = l cos ⁡ θ l_z = l\cos\theta lz=lcosθ

此时 f \mathbf{f} f 并不是力,而是:
f = f l cos ⁡ θ \mathbf{f} = fl\cos\theta f=flcosθ

∫ d 3 l exp ⁡ ( β f ) = ∫ 0 2 π d ϕ ∫ 0 π l 2 sin ⁡ θ exp ⁡ ( β f l cos ⁡ θ ) d θ ∝ ( exp ⁡ ( β f l ) − exp ⁡ ( − β f l ) β f l ) \int d^3\mathbf{l}\exp(\beta\mathbf{f}) = \int_0^{2\pi}d\phi\int_0^{\pi}l^2\sin\theta\exp(\beta fl\cos\theta) d\theta \propto (\frac{\exp(\beta fl) - \exp(-\beta fl)}{\beta fl}) d3lexp(βf)=02πdϕ0πl2sinθexp(βflcosθ)dθ(βflexp(βfl)exp(βfl))

那么 q ∝ ( exp ⁡ ( β f l ) − exp ⁡ ( − β f l ) β f l ) n q\propto (\frac{\exp(\beta fl) - \exp(-\beta fl)}{\beta fl})^n q(βflexp(βfl)exp(βfl))n

因此:
∣ ⟨ r n − r 0 ⟩ ∣ = k B T d ln ⁡ q d f = k B T n [ l k B T c o t h ( f l k B T ) − 1 f ] |\langle \mathbf{r_n} - \mathbf{r_0}\rangle| = k_BT\frac{d\ln q}{df} = k_BTn[\frac{l}{k_BT}coth(\frac{fl}{k_BT}) - \frac{1}{f}] rnr0=kBTdfdlnq=kBTn[kBTlcoth(kBTfl)f1]

f l ≪ k B T fl \ll k_BT flkBT 时, c o t h a ≈ 1 / a + a / 3 + … cotha \approx 1/a + a/3 + \dots cotha1/a+a/3+:
∣ ⟨ r n − r 0 ⟩ ∣ = n l 2 f 3 k B T |\langle \mathbf{r_n} - \mathbf{r_0}\rangle| = \frac{nl^2f}{3k_BT} rnr0=3kBTnl2f
显示出 Hooke 定律行为。

f l ≫ k B T fl \gg k_BT flkBT 时:
∣ ⟨ r n − r 0 ⟩ ∣ → n l [ 1 − k B T f l + 2 e − 2 f l k B T ] |\langle \mathbf{r_n} - \mathbf{r_0}\rangle| \to nl[1 - \frac{k_BT}{fl} + 2e^{-2\frac{fl}{k_BT}}] rnr0nl[1flkBT+2e2kBTfl]
接近完全拉伸,Hooke 定律失效。

Chapter IX Non-equilibrium Thermodynamics of Single Molecules

The Gibbs Free Energy

焓的定义:
H ≡ U + p V H \equiv U + pV HU+pV

要凭空创造出一个系统,先要给予能量 U U U,再加上 p V pV pV 来推开气体。

吉布斯自由能的定义:
G ≡ U − T S + p V G \equiv U - TS + pV GUTS+pV

大小为 T S TS TS 的能量会自发流入,再减去 T S TS TS 即可。

Gibbs Free Energy or Helmholtz Free Energy

G 是的一定温度、压力下相的稳定性的量度, G = f ( T , p ) G = f(T, p) G=f(T,p)。满足:
d G = V d p − S d T dG = Vdp - SdT dG=VdpSdT

体系自由能减少量 = 可提供环境最大非体积功(有用功)。

A 衡量的是是系统能做的最大总功, A = f ( T , V ) A = f(T, V) A=f(T,V)
A = U − T S A = U - TS A=UTS
d A = − S d T − p d V dA = -SdT - pdV dA=SdTpdV

这里使用 G G G 作为自由能, q q q 为配分函数:
G = − k B T ln ⁡ q G = -k_BT\ln q G=kBTlnq
q = e − G k B T q = e^{-\frac{G}{k_BT}} q=ekBTG

Extension and Contraction of Molecular Springs

考虑在势场 γ ( X − x ) 2 / 2 \gamma(X-x)^2/2 γ(Xx)2/2 下,分子由 X ( 0 ) = x 1 X(0)=x_1 X(0)=x1 被拉拽至 X ( τ ) = x 2 X(\tau)=x_2 X(τ)=x2。假设有:
G ( x 2 ) − G ( x 1 ) ≫ k B T G(x_2) - G(x_1) \gg k_BT G(x2)G(x1)kBT

则分子可在外力下达到不太可能占据的状态。

The Work Performed On the Molecule by the Pulling Device

拉拽设备做的功可由每个瞬间的力对位移积分得到:
W 12 = ∫ 0 τ f ( t ) d x ( t ) = ∫ 0 τ γ [ X ( t ) − x ( t ) ] x ˙ ( t ) d t W_{12} = \int_0^{\tau}f(t)dx(t) = \int_0^{\tau}\gamma[X(t) - x(t)]\dot{x}(t)dt W12=0τf(t)dx(t)=0τγ[X(t)x(t)]x˙(t)dt

x x x 为考虑 γ [ X ( t ) − x ( t ) ] \gamma[X(t) - x(t)] γ[X(t)x(t)] 时的 (过阻尼) Langevin 方程的解:
0 = − γ ( x − X ) − G ′ ( x ) x ˙ − η x ˙ + R ( t ) 0 = -\gamma(x - X) - G'(x)\dot{x} - \eta\dot{x} + R(t) 0=γ(xX)G(x)x˙ηx˙+R(t)

移项后两边同乘 x ˙ \dot{x} x˙
γ ( X − x ) = G ′ ( x ) x ˙ x ˙ + η x ˙ 2 − R ( t ) d o t x \gamma(X - x) = G'(x)\dot{x}\dot{x} + \eta\dot{x}^2 - R(t)dot{x} γ(Xx)=G(x)x˙x˙+ηx˙2R(t)dotx

功可表达为:
W 12 = G [ x ( τ ) ] − G [ x ( 0 ) ] + η ∫ 0 τ d t x ˙ − ∫ 0 τ d t R ( t ) x ˙ ( t ) W_{12} = G[x(\tau)] - G[x(0)] + \eta\int_0^{\tau}dt\dot{x} - \int_0^{\tau}dtR(t)\dot{x}(t) W12=G[x(τ)]G[x(0)]+η0τdtx˙0τdtR(t)x˙(t)

拉伸过程很慢, x ˙ → 0 \dot{x}\to 0 x˙0,后两项忽略:
W 12 = G [ x ( τ ) ] − G [ x ( 0 ) ] W_{12} = G[x(\tau)] - G[x(0)] W12=G[x(τ)]G[x(0)]

拉拽设备足够 stiff 时:
x ( 0 ) ≈ x 1 = X ( 0 ) ;   x ( τ ) ≈ x 2 = X ( τ ) x(0)\approx x_1 = X(0);\ x(\tau)\approx x_2 = X(\tau) x(0)x1=X(0); x(τ)x2=X(τ)

从而有:
W 12 = G ( x 2 ) − G ( x 1 ) W_{12} = G(x_2) - G(x_1) W12=G(x2)G(x1)

x 1 ,   x 2 x_1,\ x_2 x1, x2 为实验可控量。

令:
W 12 = G [ x ( τ ) ] − G [ x ( 0 ) ] + η ∫ 0 τ d t x ˙ − ∫ 0 τ d t R ( t ) x ˙ ( t ) = Δ G + W d i s + W R \begin{align*} W_{12} &= G[x(\tau)] - G[x(0)] + \eta\int_0^{\tau}dt\dot{x} - \int_0^{\tau}dtR(t)\dot{x}(t) \\ &= \Delta G + W_{dis} + W_R \end{align*} W12=G[x(τ)]G[x(0)]+η0τdtx˙0τdtR(t)x˙(t)=ΔG+Wdis+WR

第一项为自由能变化量;第二项为摩擦力耗散下产生的热量;第三项由随机导致, W R > 0 W_R \gt 0 WR>0 有助于拉伸; W R < 0 W_R \lt 0 WR<0 对拉伸起反作用。

由于 ⟨ R ( t ) ⟩ = 0 \langle R(t)\rangle = 0 R(t)⟩=0,与 x ( t ) x(t) x(t) 无关:
⟨ W R ⟩ = 0 \langle W_R\rangle = 0 WR=0

且:
W d i s ≥ 0 W_{dis} \ge 0 Wdis0

可见:
⟨ W 12 ⟩ = Δ G + ⟨ W d i s ⟩ + ⟨ W R ⟩ ≥ Δ G ≈ G ( x 2 ) − G ( x 1 ) \langle W_{12}\rangle = \Delta G + \langle W_{dis}\rangle + \langle W_R\rangle \ge \Delta G\approx G(x_2) - G(x_1) W12=ΔG+Wdis+WRΔGG(x2)G(x1)

或:
⟨ W 12 ⟩ ≥ G ( x 2 ) − G ( x 1 ) \langle W_{12}\rangle \ge G(x_2) - G(x_1) W12G(x2)G(x1)

Contraction : the Work Performed On the Pulling Device by the Molecule

分子在拉拽设备上做的功:
W 12 ⋆ = − ∫ 0 τ f ( t ) d x ( t ) = ∫ 0 τ γ [ X ( t ) − x ( t ) ] x ˙ ( t ) d t W_{12}^\star = -\int_0^{\tau}f(t)dx(t) = \int_0^{\tau}\gamma[X(t) - x(t)]\dot{x}(t)dt W12=0τf(t)dx(t)=0τγ[X(t)x(t)]x˙(t)dt

类似地,可以得到:
W 12 ⋆ = G [ x ( 0 ) ] − G [ x ( τ ) ] − η ∫ 0 τ d t x ˙ + ∫ 0 τ d t R ( t ) x ˙ ( t ) = Δ G − W d i s + W R \begin{align*} W_{12}^\star &= G[x(0)] - G[x(\tau)] - \eta\int_0^{\tau}dt\dot{x} + \int_0^{\tau}dtR(t)\dot{x}(t) \\ &= \Delta G - W_{dis} + W_R \end{align*} W12=G[x(0)]G[x(τ)]η0τdtx˙+0τdtR(t)x˙(t)=ΔGWdis+WR

第一项为自由能变化量,与拉伸的始末状态相反;第二项为摩擦力耗散下产生的热量;第三项由随机导致, W R > 0 W_R \gt 0 WR>0 有助收缩; W R < 0 W_R \lt 0 WR<0 对收缩起反作用。

也有:
⟨ W 12 ⋆ ⟩ = Δ G − ⟨ W d i s ⟩ + ⟨ W R ⟩ ≤ Δ G ≈ G ( x 2 ) − G ( x 1 ) \langle W_{12}^\star\rangle = \Delta G - \langle W_{dis}\rangle + \langle W_R\rangle \le \Delta G\approx G(x_2) - G(x_1) W12=ΔGWdis+WRΔGG(x2)G(x1)

或:
⟨ W 12 ⋆ ⟩ ≤ G ( x 2 ) − G ( x 1 ) \langle W_{12}^\star\rangle \le G(x_2) - G(x_1) W12G(x2)G(x1)

可见
⟨ W 12 ⟩ ≥ ⟨ W 12 ⋆ ⟩ \langle W_{12}\rangle \ge \langle W_{12}^\star\rangle W12W12

Supersystem and the work

Supersystem: 考虑所有分子的自由度,再加上足够的溶剂分子作为一个鼓励体系。使用 r ⃗ ,   p ⃗ \vec{r},\ \vec{p} r , p 作为每个粒子的坐标和动量。

初始能量为 E 0 ( r ⃗ ,   p ⃗ ) E_0(\vec{r},\ \vec{p}) E0(r , p ) (与时间无关)。

引入一个与时间有关的微扰: V ( X ( t ) ,   r ⃗ ) = 1 2 γ [ x ( t ) − X ( t ) ] 2 V(X(t),\ \vec{r}) = \frac{1}{2}\gamma[x(t) - X(t)]^2 V(X(t), r )=21γ[x(t)X(t)]2,总能变为: E ( r ⃗ ,   p ⃗ ) = E 0 ( r ⃗ ,   p ⃗ ) + V ( X ( t ) ,   r ⃗ ) E(\vec{r},\ \vec{p}) = E_0(\vec{r},\ \vec{p}) + V(X(t),\ \vec{r}) E(r , p )=E0(r , p )+V(X(t), r )。则系统根据下式演化:
d E d t = − d V d t = γ [ X ( t ) − x ( r ⃗ ) ] X ˙ \frac{dE}{dt} = -\frac{dV}{dt} = \gamma[X(t) - x(\vec{r})]\dot{X} dtdE=dtdV=γ[X(t)x(r )]X˙

f ( t ) = γ [ X ( t ) − x ( r ⃗ ) ] X ˙ f(t) = \gamma[X(t) - x(\vec{r})]\dot{X} f(t)=γ[X(t)x(r )]X˙
W 12 = ∫ 0 τ f ( t ) d x ( t ) = ∫ 0 τ γ [ X ( t ) − x ( t ) ] x ( t ) ˙ d t W_{12} = \int_0^\tau f(t)dx(t) = \int_0^\tau \gamma[X(t) - x(t)]\dot{x(t)}dt W12=0τf(t)dx(t)=0τγ[X(t)x(t)]x(t)˙dt
W ~ 12 = ∫ 0 τ f ( t ) d X ( t ) = ∫ 0 τ γ [ X ( t ) − x ( t ) ] X ( t ) ˙ d t \tilde{W}_{12} = \int_0^\tau f(t)dX(t) = \int_0^\tau \gamma[X(t) - x(t)]\dot{X(t)}dt W~12=0τf(t)dX(t)=0τγ[X(t)x(t)]X(t)˙dt

W 12 W_{12} W12 W ~ 12 \tilde{W}_{12} W~12 分别是使用分子拉伸量和控制设备坐标的表达式,那么有:
δ W 12 = W ~ 12 − W 12 = ∫ 0 τ γ ( X − x ) ( X ˙ − x ˙ ) d t = 1 2 ∫ 0 τ d d t [ γ ( X − x ) 2 ] d t = γ [ X ( τ ) − x ( τ ) ] 2 2 − γ [ X ( 0 ) − x ( 0 ) ] 2 2 \delta W_{12} = \tilde{W}_{12} - W_{12} = \int_0^\tau\gamma(X - x)(\dot{X} - \dot{x})dt = \frac{1}{2}\int_0^\tau\frac{d}{dt}[\gamma(X - x)^2]dt = \frac{\gamma[X(\tau) - x(\tau)]^2}{2} - \frac{\gamma[X(0) - x(0)]^2}{2} δW12=W~12W12=0τγ(Xx)(X˙x˙)dt=210τdtd[γ(Xx)2]dt=2γ[X(τ)x(τ)]22γ[X(0)x(0)]2

δ W 12 \delta W_{12} δW12 为设备额外存储或释放的能量。

Exact Relationships Between Free Energy and Nonequilibrium Work

已经得到:
W 12 ≥ G ( x 2 ) − G ( x 1 ) ≥ W 12 ⋆ W_{12} \ge G(x_2) - G(x_1) \ge W_{12}^\star W12G(x2)G(x1)W12

Chris Jarzynski 发现:
⟨ e − W ~ 12 k B T ⟩ = e − G 2 − G 1 k B T \langle e^{-\frac{\tilde{W}_{12}}{k_BT}}\rangle = e^{-\frac{G_2 - G_1}{k_BT}} ekBTW~12=ekBTG2G1

如果使用足够 stiff 的设备:
⟨ e − W ~ 12 k B T ⟩ = e − G ( x 2 ) − G ( x 1 ) k B T \langle e^{-\frac{\tilde{W}_{12}}{k_BT}}\rangle = e^{-\frac{G(x_2) - G(x_1)}{k_BT}} ekBTW~12=ekBTG(x2)G(x1)

剩余功有:
⟨ e − Δ W ~ 12 k B T ⟩ = 1 \langle e^{-\frac{\Delta \tilde{W}_{12}}{k_BT}}\rangle = 1 ekBTΔW~12=1

其中剩余功 Δ W ~ 12 = W ~ 12 − [ G ( x 2 ) − G ( x 1 ) ] \Delta \tilde{W}_{12} = \tilde{W}_{12} - [G(x_2) - G(x_1)] ΔW~12=W~12[G(x2)G(x1)]

The Proof of Jarzynski Identity

始态: E 1 ,   X ( 0 ) = x 1 E_1,\ X(0)=x_1 E1, X(0)=x1,输入拉力的功 W ~ 12 \tilde{W}_{12} W~12 后终态: E 2 ,   X ( τ ) = x 2 E_2,\ X(\tau)=x_2 E2, X(τ)=x2

总能可表达为: E ( r ⃗ ( t ) ,   p ⃗ ( t ) ;   t ) = E 0 ( r ⃗ ( t ) ,   p ⃗ ( t ) ) + V ( X ( t ) ,   r ⃗ ) E(\vec{r}(t),\ \vec{p}(t);\ t) = E_0(\vec{r}(t),\ \vec{p}(t)) + V(X(t),\ \vec{r}) E(r (t), p (t); t)=E0(r (t), p (t))+V(X(t), r )

始态处于热平衡,初始位置的概率分布与 Boltzmann 因子 exp ⁡ ( − E 1 k B T ) \exp(-\frac{E_1}{k_BT}) exp(kBTE1) 成正比。

其中 E 1 ( r ⃗ ( 0 ) ,   p ⃗ ( 0 ) ) = E ( r ⃗ ( 0 ) ,   p ⃗ ( 0 ) ;   0 ) = E 0 ( r ⃗ ( 0 ) ,   p ⃗ ( 0 ) ) + V ( x 1 ,   r ⃗ [ 0 ] ) E_1(\vec{r}(0),\ \vec{p}(0)) = E(\vec{r}(0),\ \vec{p}(0);\ 0) = E_0(\vec{r}(0),\ \vec{p}(0)) + V(x_1,\ \vec{r}[0]) E1(r (0), p (0))=E(r (0), p (0); 0)=E0(r (0), p (0))+V(x1, r [0])

W ~ 12 \tilde{W}_{12} W~12 是通过与初始分布有关的 f f f 积分得到的,因此任何 W ~ 12 \tilde{W}_{12} W~12 的函数 ϕ ( W ~ 12 ) \phi(\tilde{W}_{12}) ϕ(W~12) 可根据初始分布计算平均值。令 ϕ ( W ~ 12 ) = e − W ~ 12 k B T \phi(\tilde{W}_{12}) = e^{-\frac{\tilde{W}_{12}}{k_BT}} ϕ(W~12)=ekBTW~12,其平均可由下式计算:
⟨ e − W ~ 12 k B T ⟩ = q 1 − 1 ∫ d r ⃗ ( 0 ) d p ⃗ ( 0 ) exp ⁡ ( − W ~ 12 k B T ) exp ⁡ ( − E 1 ( r ⃗ ( 0 ) ,   p ⃗ ( 0 ) ) k B T ) \langle e^{-\frac{\tilde{W}_{12}}{k_BT}}\rangle = q_1^{-1}\int d\vec{r}(0)d\vec{p}(0)\exp (-\frac{\tilde{W}_{12}}{k_BT}) \exp (\frac{-E_1(\vec{r}(0),\ \vec{p}(0))}{k_BT}) ekBTW~12=q11dr (0)dp (0)exp(kBTW~12)exp(kBTE1(r (0), p (0)))

其中 q 1 q_1 q1 为 supersystem 与 E 1 E_1 E1 有关的配分函数。

注意到, E 1 ( r ⃗ ( 0 ) ,   p ⃗ ( 0 ) ) + W ~ 12 = E 2 ( r ⃗ ( τ ) ,   p ⃗ ( τ ) ) = E 0 ( r ⃗ ( τ ) ,   p ⃗ ( τ ) ) + V [ x 2 , r ⃗ ( τ ) ] E_1(\vec{r}(0),\ \vec{p}(0)) + \tilde{W}_{12} = E_2(\vec{r}(\tau),\ \vec{p}(\tau)) = E_0(\vec{r}(\tau),\ \vec{p}(\tau)) + V[x_2, \vec{r}(\tau)] E1(r (0), p (0))+W~12=E2(r (τ), p (τ))=E0(r (τ), p (τ))+V[x2,r (τ)]

可得:
⟨ e − W ~ 12 k B T ⟩ = q 1 − 1 ∫ d r ⃗ ( 0 ) d p ⃗ ( 0 ) exp ⁡ ( − E 2 ( r ⃗ ( τ ) ,   p ⃗ ( τ ) ) k B T ) \langle e^{-\frac{\tilde{W}_{12}}{k_BT}}\rangle = q_1^{-1}\int d\vec{r}(0)d\vec{p}(0)\exp (\frac{-E_2(\vec{r}(\tau),\ \vec{p}(\tau))}{k_BT}) ekBTW~12=q11dr (0)dp (0)exp(kBTE2(r (τ), p (τ)))

根据 Liouville 定理: 沿经典轨迹相空间体积守恒。那么:
⟨ e − W ~ 12 k B T ⟩ = q 2 / q 1 \langle e^{-\frac{\tilde{W}_{12}}{k_BT}}\rangle = q_2/q_1 ekBTW~12=q2/q1

其中 q 2 q_2 q2 为 supersystem 与 E 2 E_2 E2 有关的配分函数。

定义联合配分函数 q 1 , 2 = e − G 1 , 2 k B T q_{1, 2} = e^{-\frac{G_{1, 2}}{k_BT}} q1,2=ekBTG1,2,从而:
⟨ e − W ~ 12 k B T ⟩ = exp ⁡ [ − G 2 − G 1 k B T ] \langle e^{-\frac{\tilde{W}_{12}}{k_BT}}\rangle = \exp[-\frac{G_2 - G_1}{k_BT}] ekBTW~12=exp[kBTG2G1]

G 1 ,   G 2 G_1,\ G_2 G1, G2 为对应于 q 1 ,   q 2 q_1,\ q_2 q1, q2 的配分函数,由于 q 1 ,   q 2 q_1,\ q_2 q1, q2 是与拉拽设备刚度有关的配分函数,不是分子内部属性。因此,下面的讨论将限制在在刚性弹簧之内,重写配分函数为:
q 1 , 2 = ∫ d r ⃗ d p ⃗ e − E 0 ( r ⃗ ,   p ⃗ ) k B T e − γ ( x 1 , 2 − x ) 2 2 k B T q_{1, 2} = \int d\vec{r}d\vec{p}e^{-\frac{E_0(\vec{r},\ \vec{p})}{k_BT}}e^{-\frac{\gamma(x_{1, 2} - x)^2}{2k_BT}} q1,2=dr dp ekBTE0(r , p )e2kBTγ(x1,2x)2

γ → ∞ \gamma\to\infty γ 有:
q 1 , 2 = γ 2 π k B T ∫ d r ⃗ d p ⃗ e − E 0 ( r ⃗ ,   p ⃗ ) k B T δ ( x 1 , 2 − x ) ∝ w ( x 1 , 2 ) = e − G ( x 1 , 2 ) k B T q_{1, 2} = \sqrt{\frac{\gamma}{2\pi k_BT}}\int d\vec{r}d\vec{p}e^{-\frac{E_0(\vec{r},\ \vec{p})}{k_BT}}\delta(x_{1, 2} - x) \propto w(x_{1, 2}) = e^{-\frac{G(x_{1, 2})}{k_BT}} q1,2=2πkBTγ dr dp ekBTE0(r , p )δ(x1,2x)w(x1,2)=ekBTG(x1,2)

δ \delta δ 函数由下式定义:
δ ( x ) = lim ⁡ b → 0 1 ∣ b ∣ π e − ( x / b ) 2 \delta(x) = \lim\limits_{b\to0}\frac{1}{|b|\sqrt{\pi}}e^{-(x/b)^2} δ(x)=b0limbπ 1e(x/b)2

结合 q 1 , 2 ∝ w ( x 1 , 2 ) = e − G ( x 1 , 2 ) k B T q_{1, 2} \propto w(x_{1, 2}) = e^{-\frac{G(x_{1, 2})}{k_BT}} q1,2w(x1,2)=ekBTG(x1,2) ⟨ e − W ~ 12 k B T ⟩ = q 2 / q 1 \langle e^{-\frac{\tilde{W}_{12}}{k_BT}}\rangle = q_2/q_1 ekBTW~12=q2/q1 有:
⟨ e − W ~ 12 k B T ⟩ = exp ⁡ [ − G ( x 2 ) − G ( x 1 ) k B T ] \langle e^{-\frac{\tilde{W}_{12}}{k_BT}}\rangle = \exp[-\frac{G(x_2) - G(x_1)}{k_BT}] ekBTW~12=exp[kBTG(x2)G(x1)]

给出了实际联系拉拽设备所做的功和分子以及自由能差的方程。

Math Connections Between the Inequalities & the Identities

Jensen’s 不等式:
ϕ ( E [ X ] ) ≤ E [ ϕ ( X ) ] \phi(E[X]) \le E[\phi(X)] ϕ(E[X])E[ϕ(X)]

因此: e ⟨ a ⟩ ≤ ⟨ e a ⟩ e^{\langle a\rangle} \le {\langle e^a\rangle} eaea

a = W ~ 12 a = \tilde{W}_{12} a=W~12 有:
e − ⟨ W ~ 12 ⟩ k B T ≤ ⟨ e − W ~ 12 k B T ⟩ = exp ⁡ [ − G ( x 2 ) − G ( x 1 ) k B T ] e^{-\frac{\langle \tilde{W}_{12}\rangle}{k_BT}} \le \langle e^{-\frac{\tilde{W}_{12}}{k_BT}}\rangle = \exp[-\frac{G(x_2) - G(x_1)}{k_BT}] ekBTW~12ekBTW~12=exp[kBTG(x2)G(x1)]

那么 ⟨ W ~ 12 ⟩ ≥ G ( x 2 ) − G ( x 1 ) \langle \tilde{W}_{12}\rangle \ge G(x_2) - G(x_1) W~12G(x2)G(x1)

类似地 ⟨ W ~ 12 ⋆ ⟩ = − ⟨ W ~ 12 ⟩ ≤ G ( x 2 ) − G ( x 1 ) \langle \tilde{W}_{12}^\star\rangle = - \langle \tilde{W}_{12}\rangle \le G(x_2) - G(x_1) W~12=W~12G(x2)G(x1)

根据剩余功定义 Δ W ~ 12 = W ~ 12 − [ G ( x 2 ) − G ( x 1 ) ] \Delta \tilde{W}_{12} = \tilde{W}_{12} - [G(x_2) - G(x_1)] ΔW~12=W~12[G(x2)G(x1)] 可得:
⟨ Δ W ~ 12 ≥ 0 ⟩ \langle \Delta \tilde{W}_{12} \ge 0\rangle ΔW~120

但根据 Jarzynski’s equality:
⟨ e − Δ W ~ 12 k B T ⟩ = 1 \langle e^{-\frac{\Delta\tilde{W}_{12}}{k_BT}}\rangle = 1 ekBTΔW~12=1

说明 Δ W ~ 12 \Delta\tilde{W}_{12} ΔW~12 又会有负值出现,负值发生的情况很稀有,但将其放在指数上会有显著影响。

The Crook’s Fluctuation Theorem

两个方向的功 ( 1 → 2 ,   2 → 1 1\to2,\ 2\to1 12, 21) 的分布满足:
w 12 ( W ~ ) = exp ⁡ [ W − G 2 + G 1 k B T ] w 21 ∗ ( W ~ ) w_{12}(\tilde{W}) = \exp[\frac{W - G_2 + G_1}{k_BT}]w_{21}^*(\tilde{W}) w12(W~)=exp[kBTWG2+G1]w21(W~)

这个方程告诉我们当 W ~ \tilde{W} W~ 正好等于 G 2 − G 1 G_2 - G_1 G2G1 时,拉拽设备做的功等于分子松弛过程做的功。拉拽设备刚性足够大时, W ~ \tilde{W} W~ 就等于始末位置自由能差。

The Crook’s Fluctuation Theorem and Jarzynski’s Identity

在 Crook’s Fluctuation Theorem 两边同乘 exp ⁡ [ − W ~ k B T ] \exp[-\frac{\tilde{W}}{k_BT}] exp[kBTW~] 后积分,注意到 w 12 ( W ~ ) ,   w 21 ∗ ( W ~ ) w_{12}(\tilde{W}),\ w_{21}^*(\tilde{W}) w12(W~), w21(W~) 都是归一化的,那么可以得到:
⟨ exp ⁡ [ − W ~ k B T ] ⟩ = exp ⁡ [ − G 2 − G 1 k B T ] \langle \exp[-\frac{\tilde{W}}{k_BT}]\rangle = \exp[-\frac{G_2 - G_1}{k_BT}] exp[kBTW~]⟩=exp[kBTG2G1]

也就是 Jarzynski Identity。

Energy Dissipation In Biological Molecules: Sacrificial Bonds And Molecular Shock Absorbers

Chapter X Single-Molecule Phenomena in Living Systems

Equilibrium vs non-equilibrium in living systems

平衡与非平衡通常与各种时空内容相联系,活体并不与其环境达成平衡。

  • 糖分燃烧,体内的分子机械显然是非平衡的。
  • 我们身体很好地保持温度,是较为平衡的。

完全的平衡意味着与时间无关,也就不是生命,生命可看成是部分平衡。

Single-molecule view of enzyme catalysis

无酶参与的反应:
R ↔ k P → R k R → P P \mathrm{R} \xleftrightarrow[k_{P\to R}]{k_{R\to P}} \mathrm{P} RkRP kPRP

有:
d N R / d t = − d N P / d t = − k R → P N R + k P → R N P dN_R/dt = -dN_P/dt = -k_{R\to P}N_R + k_{P\to R}N_P dNR/dt=dNP/dt=kRPNR+kPRNP
[ R ] = N R / V ,   d [ R ] / d t = − d [ P ] / d t = − k R → P [ R ] + k P → R [ P ] [R] = N_R/V,\ d[R]/dt = -d[P]/dt = -k_{R\to P}[R] + k_{P\to R}[P] [R]=NR/V, d[R]/dt=d[P]/dt=kRP[R]+kPR[P]

Michaelis-Menten (MM) mechanism (米氏机理,酶参与):
E + R ↔ k − 1 k 1 E R ↔ k − 2 k 2 E + P \mathrm{E + R} \xleftrightarrow[k_{-1}]{k_1} ER \xleftrightarrow[k_{-2}]{k_2} \mathrm{E + P} E+Rk1 k1ERk2 k2E+P

还有:
d [ R ] / d t = − k 1 [ E ] [ R ] + k − 1 [ E R ] d[R]/dt = -k_1[E][R] + k_{-1}[ER] d[R]/dt=k1[E][R]+k1[ER]
d [ E R ] / d t = k 1 [ E ] [ R ] + k − 2 [ E ] [ P ] − k 2 [ E R ] − k − 1 [ E R ] d[ER]/dt = k_1[E][R] + k_{-2}[E][P] - k_{2}[ER] - k_{-1}[ER] d[ER]/dt=k1[E][R]+k2[E][P]k2[ER]k1[ER]
d [ P ] / d t = k 2 [ E R ] − k − 2 [ E ] [ P ] d[P]/dt = k_2[ER] - k_{-2}[E][P] d[P]/dt=k2[ER]k2[E][P]
d [ E ] / d t = − k 1 [ E ] [ R ] − k − 2 [ E ] [ P ] + k 2 [ E R ] + k − 1 [ E R ] d[E]/dt = -k_1[E][R] - k_{-2}[E][P] + k_{2}[ER] + k_{-1}[ER] d[E]/dt=k1[E][R]k2[E][P]+k2[ER]+k1[ER]
d ( [ E ] + [ E R ] ) / D T = 0 ,   d [ E ] / d t = − d [ E R ] / D T d([E] + [ER])/DT = 0,\ d[E]/dt = -d[ER]/DT d([E]+[ER])/DT=0, d[E]/dt=d[ER]/DT

MM 的一个重要特征的饱和效应 (saturation effect)

近似 1:过平衡假设
E + R ↔ k − 1 k 1 E R → k 2 E + P    k 2 ≪ k − 1 \mathrm{E + R} \xleftrightarrow[k_{-1}]{k_1} ER \overset{k_2}{\rightarrow} \mathrm{E + P}\ \ k_2 \ll k_{-1} E+Rk1 k1ERk2E+P  k2k1

d [ P ] / d t = k 1 k 2 k − 1 [ E ] [ R ] d[P]/dt=\frac{k_1k_2}{k_{-1}}[E][R] d[P]/dt=k1k1k2[E][R]

d [ P ] / d t = k 2 [ E 0 ] [ R 0 ] R 0 + k − 1 k 1 d[P]/dt=\frac{k_2[E_0][R_0]}{R_0+\frac{k_{-1}}{k_1}} d[P]/dt=R0+k1k1k2[E0][R0]

近似 2:稳态近似
E + R ↔ k − 1 k 1 E R ↔ k − 2 k 2 E + P \mathrm{E + R} \xleftrightarrow[k_{-1}]{k_1} ER \xleftrightarrow[k_{-2}]{k_2} \mathrm{E + P} E+Rk1 k1ERk2 k2E+P

[ P ] = 0 [P]=0 [P]=0 产物被立即移走。 E R \mathrm{ER} ER 为稳态。

d [ P ] / d t = k 2 [ E 0 ] [ R 0 ] R 0 + k − 1 + k 2 k 1 d[P]/dt=\frac{k_2[E_0][R_0]}{R_0+\frac{k_{-1}+k_2}{k_1}} d[P]/dt=R0+k1k1+k2k2[E0][R0]

MM 机理:
d [ P ] / d t = k 2 [ E 0 ] [ R 0 ] R 0 + K d[P]/dt=\frac{k_2[E_0][R_0]}{R_0+K} d[P]/dt=R0+Kk2[E0][R0]

在单分子水平,定义:
k 1 ′ = k 1 [ R ] ,   k − 2 ′ = k − 2 [ P ] k_1' = k_1[R],\ k_{-2}' = k_{-2}[P] k1=k1[R], k2=k2[P]
E ↔ k − 1 k 1 ′ E R ↔ k − 2 k 2 ′ E ↔ k − 1 k 1 ′ E R ↔ k − 2 k 2 ′ E ↔ … \mathrm{E} \xleftrightarrow[k_{-1}]{k_1'} \mathrm{ER} \xleftrightarrow[k_{-2}]{k_2'} \mathrm{E} \xleftrightarrow[k_{-1}]{k_1'} \mathrm{ER} \xleftrightarrow[k_{-2}]{k_2'} \mathrm{E} \xleftrightarrow \dots Ek1 k1ERk2 k2Ek1 k1ERk2 k2E

detailed balance 被破坏的情形:
E 1 ↔ E R ↔ E 2 ↔ E R ↔ E 3 ↔ E R … \mathrm{E_1} \leftrightarrow \mathrm{ER} \leftrightarrow \mathrm{E_2} \leftrightarrow \mathrm{ER} \leftrightarrow \mathrm{E_3} \leftrightarrow \mathrm{ER} \dots E1ERE2ERE3ER

k − 2 ′ ≈ 0 k_{-2}'\approx 0 k20 有:
E ↔ k − 1 k 1 ′ E R → k 2 E ↔ k − 1 k 1 ′ E R → k 2 E ↔ … \mathrm{E} \xleftrightarrow[k_{-1}]{k_1'} \mathrm{ER} \overset{k_2}{\rightarrow} \mathrm{E} \xleftrightarrow[k_{-1}]{k_1'} \mathrm{ER} \overset{k_2}{\rightarrow} \mathrm{E} \leftrightarrow \dots Ek1 k1ERk2Ek1 k1ERk2E

v = k 2 w E R = k 2 1 + k − 1 + k 2 k 1 ′ = k 2 [ R ] [ R ] + K v = k_2w_{ER} = \frac{k_2}{1+\frac{k_{-1}+k_2}{k_1'}} = \frac{k_2[R]}{[R] + K} v=k2wER=1+k1k1+k2k2=[R]+Kk2[R]

对于:
E → k 1 ′ I 1 → k 2 I 2 → … → k N I n → k N + 1 E → k 1 ′ I 1 … \mathrm{E} \overset{k_1'}{\rightarrow} \mathrm{I_1} \overset{k_2}{\rightarrow} \mathrm{I_2} \rightarrow \dots \overset{k_N}{\rightarrow} \mathrm{I_n} \overset{k_{N+1}}{\rightarrow} \mathrm{E} \overset{k_1'}{\rightarrow} \mathrm{I_1}\dots Ek1I1k2I2kNInkN+1Ek1I1

总的转化时间: t = t 1 + t 2 + ⋯ + t N + 1 t = t_1 + t_2 + \dots + t_{N+1} t=t1+t2++tN+1 ⟨ t ⟩ = ⟨ t 1 ⟩ + ⟨ t 2 ⟩ + ⋯ + ⟨ t N + 1 ⟩ \langle t\rangle = \langle t_1\rangle + \langle t_2\rangle + \dots + \langle t_{N+1}\rangle t=t1+t2++tN+1

⟨ t 1 ⟩ = 1 / k 1 ′ ,   ⟨ t i ⟩ 1 / k 1 ⇒ ⟨ t ⟩ = 1 k 1 ′ + ∑ i = 2 N + 1 1 k i \langle t_1\rangle = 1/k_1',\ \langle t_i\rangle 1/k_1 \Rightarrow \langle t\rangle = \frac{1}{k_1'} + \sum\limits_{i=2}^{N+1}\frac{1}{k_i} t1=1/k1, ti1/k1t=k11+i=2N+1ki1

v = ⟨ t ⟩ − 1 = [ R ] τ 2 − 1 [ R ] + K v = \langle t\rangle^{-1} = \frac{[R]\tau_2^{-1}}{[R] + K} v=t1=[R]+K[R]τ21

其中 τ 2 = ∑ i = 2 N + 1 1 k i \tau_2 = \sum\limits_{i=2}^{N+1}\frac{1}{k_i} τ2=i=2N+1ki1 K = τ 2 − 1 / k 1 K = \tau_2^{-1}/k_1 K=τ21/k1

对于:
E → k 1 ′ I 1 → k 2 I 2 → … → k N I n → k N + 1 E → k 1 ′ I 1 … \mathrm{E} \overset{k_1'}{\rightarrow} \mathrm{I_1} \overset{k_2}{\rightarrow} \mathrm{I_2} \rightarrow \dots \overset{k_N}{\rightarrow} \mathrm{I_n} \overset{k_{N+1}}{\rightarrow} \mathrm{E} \overset{k_1'}{\rightarrow} \mathrm{I_1}\dots Ek1I1k2I2kNInkN+1Ek1I1

有:
w ( t ) ∝ t N w(t)\propto t^N w(t)tN

N = 0 N = 0 N=0,一步反应, w ( t ) = k R → P e − k R → P t ,   w ( t ) ∝ t 0   a t   t → 0 w(t) = k_{R\to P}e^{-k_{R\to P}t},\ w(t)\propto t^0\ at\ t\to 0 w(t)=kRPekRPt, w(t)t0 at t0

N = 0 N = 0 N=0,两步反应, w ( t ) = e − k 1 ′ t − e − k 2 t ( k 1 ′ ) − 1 − k 2 − 1 ,   w ( t ) ∝ t 0   a t   t → 0 ,   w ( t ) ≈ k 1 ′ k 2 t w(t) = \frac{e^{-k_1't} - e^{-k_2t}}{(k_1')^{-1} - k_2^{-1}},\ w(t)\propto t^0\ at\ t\to 0,\ w(t)\approx k_1'k_2t w(t)=(k1)1k21ek1tek2t, w(t)t0 at t0, w(t)k1k2t

N + 1 N+1 N+1 是连接 E \mathrm{E} E E ′ \mathrm{E'} E 的最小基元步骤数。

在这里插入图片描述

E adjacent states k E → E\overset{k_{E\to}}{\text{adjacent states}} Eadjacent stateskE

参考资料:
[1] Makarov, D. E. (2015). Single molecule science: Physical principles and models. CRC Press, Taylor & Francis Group.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值