文章目录
- Chapter VIII Single Molecule Mechanics
- Single-molecule Springs: Origins of Molecular elasticity
- Thermal motion comes into play
- The freely jointed chain model
- How Does Temperature Affect a Rubber Band
- THERMODYNAMICS AND KINETICS OF MECHANICALLY RUPTURED BONDS
- Slip Bonds vs Catch Bonds
- Force-induced Unfolding And Other Conformational Transitions Influenced By Forces
- Extension to Other Scenarios: the Nanopore Experiments
- Elastic Response of A Freely Jointed Chain Beyond Hooke’s Law
- Chapter IX Non-equilibrium Thermodynamics of Single Molecules
- The Gibbs Free Energy
- Gibbs Free Energy or Helmholtz Free Energy
- Extension and Contraction of Molecular Springs
- The Work Performed On the Molecule by the Pulling Device
- Contraction : the Work Performed On the Pulling Device by the Molecule
- Supersystem and the work
- Exact Relationships Between Free Energy and Nonequilibrium Work
- The Proof of Jarzynski Identity
- Math Connections Between the Inequalities & the Identities
- The Crook’s Fluctuation Theorem
- The Crook’s Fluctuation Theorem and Jarzynski’s Identity
- Energy Dissipation In Biological Molecules: Sacrificial Bonds And Molecular Shock Absorbers
- Chapter X Single-Molecule Phenomena in Living Systems
Chapter VIII Single Molecule Mechanics
Single-molecule Springs: Origins of Molecular elasticity
对于抛物线形势能曲线,有:
V
(
R
)
≈
V
(
R
0
)
+
(
1
/
/
2
)
V
′
′
(
R
0
)
(
R
−
R
0
)
2
V(R)\approx V(R_0) + (1//2)V''(R_0)(R-R_0)^2
V(R)≈V(R0)+(1//2)V′′(R0)(R−R0)2
V
(
x
)
≈
(
1
/
2
)
γ
0
x
2
V(x)\approx (1/2)\gamma_0x^2
V(x)≈(1/2)γ0x2
若拉力
f
f
f 作用在分子上使其发生拉伸
d
x
dx
dx,则有:
d
W
=
−
f
d
x
dW = -fdx
dW=−fdx
等于势能改变量:
−
f
d
x
=
d
V
=
V
′
(
x
)
d
x
-fdx = dV = V'(x)dx
−fdx=dV=V′(x)dx
可推得: f = − V ′ ( x ) f = -V'(x) f=−V′(x)
Hooke 定律:
f
=
−
V
′
(
x
)
=
−
γ
0
x
f = -V'(x) = -\gamma_0 x
f=−V′(x)=−γ0x
生物大分子大多是链状的大型聚合物。
Thermal motion comes into play
热运动带来的力:
p
=
N
k
B
T
/
v
p = Nk_BT/v
p=NkBT/v
对处于周围分子环境中的一个分子,它的总能不再固定。而是变为一个概率正比于玻尔兹曼因子 e − β E i ( x ) e^{-\beta E_i(x)} e−βEi(x) 的涨落量。
在特定的状态
i
i
i,其恢复力 (restoring force) 为:
f
i
(
x
)
=
−
d
E
i
(
x
)
d
x
f_i(x) = -\frac{dE_i(x)}{dx}
fi(x)=−dxdEi(x)
分子处于状态
i
i
i 的概率为:
w
i
(
x
)
=
e
β
E
i
(
x
)
/
∑
i
e
−
β
E
i
(
x
)
w_i(x) = e^{\beta E_i}(x)/\sum\limits_i e^{-\beta E_i(x)}
wi(x)=eβEi(x)/i∑e−βEi(x)
平均的 restoring force 为:
f
=
−
∑
i
w
i
(
x
)
d
E
i
(
x
)
d
x
=
−
d
G
d
x
f = -\sum\limits_i w_i(x)\frac{dE_i(x)}{dx} = -\frac{dG}{dx}
f=−i∑wi(x)dxdEi(x)=−dxdG
可推得:
e
−
β
G
(
x
)
=
∑
i
e
−
β
E
i
(
x
)
e^{-\beta G(x)} = \sum\limits_i e^{-\beta E_i(x)}
e−βG(x)=i∑e−βEi(x)
这样就有了自由能 G ( x ) G(x) G(x) 的定义。
再结合 w ( x ) = ∑ i e − β E i ( x ) ∑ i , x e − β E i ( x ) w(x) = \frac{\sum\limits_i e^{-\beta E_i(x)}}{\sum\limits_{i, x} e^{-\beta E_i(x)}} w(x)=i,x∑e−βEi(x)i∑e−βEi(x)
因此有:
G
(
x
)
=
−
k
B
T
ln
w
(
x
)
+
c
o
n
s
t
G(x) = -k_BT\ln w(x) + const
G(x)=−kBTlnw(x)+const
这与拉伸量 x x x 的零力、平衡概率分布对的分子力学响应相联系。注意,对于一维粒子,自由能就是势能。
The freely jointed chain model
freely jointed chain (FJC): 自由链节链”或“自由连接链”。一种理想化的聚合物链模型,链节之间可以自由旋转而没有任何限制。有
L
=
N
l
L=Nl
L=Nl,两个末端在互相周围涨落且有:
⟨
x
⃗
⟩
=
∑
i
⟨
r
i
⟩
=
0
\langle \vec{x}\rangle = \sum\limits_{i}\langle r_i\rangle = 0
⟨x⟩=i∑⟨ri⟩=0
每个
r
i
⃗
\vec{r_i}
ri 相互独立,根据中心极限定理它们的分布遵循均值为 0,方差如下的 Gaussian 分布:
⟨
σ
x
2
⟩
=
⟨
σ
y
2
⟩
=
⟨
σ
z
2
⟩
=
N
l
2
3
\langle \sigma_x^2\rangle = \langle \sigma_y^2\rangle = \langle \sigma_z^2\rangle = N\frac{l^2}{3}
⟨σx2⟩=⟨σy2⟩=⟨σz2⟩=N3l2
⟨
σ
⟩
=
⟨
σ
x
2
⟩
+
⟨
σ
y
2
⟩
+
⟨
σ
z
2
⟩
=
N
l
2
=
L
l
\langle \sigma\rangle = \langle \sigma_x^2\rangle + \langle \sigma_y^2\rangle + \langle \sigma_z^2\rangle = Nl^2 = Ll
⟨σ⟩=⟨σx2⟩+⟨σy2⟩+⟨σz2⟩=Nl2=Ll
末端-末端距离遵循如下概率分布:
w
(
x
)
=
(
3
2
π
N
l
2
)
1
/
2
e
−
3
x
2
2
N
l
2
w(x) = (\frac{3}{2\pi Nl^2})^{1/2}e^{-\frac{3x^2}{2Nl^2}}
w(x)=(2πNl23)1/2e−2Nl23x2
从而自由能,力,力常数:
G
(
x
)
=
3
k
B
T
x
2
2
N
l
2
+
c
o
n
s
t
G(x) = \frac{3k_BTx^2}{2Nl^2} + const
G(x)=2Nl23kBTx2+const
f
(
x
)
=
−
3
k
B
T
x
N
l
2
f(x) = -\frac{3k_BTx}{Nl^2}
f(x)=−Nl23kBTx
γ
=
3
k
B
T
N
l
2
\gamma = \frac{3k_BT}{Nl^2}
γ=Nl23kBT
R g = N 6 l R_g = \sqrt{\frac{N}{6}}l Rg=6Nl
How Does Temperature Affect a Rubber Band
对于一个恢复力做的正功
d
W
=
f
d
x
dW = fdx
dW=fdx,满足:
d
W
=
−
d
E
+
d
Q
dW = -dE + dQ
dW=−dE+dQ
根据
d
G
=
−
d
W
dG = -dW
dG=−dW,可得:
d
G
=
d
E
−
d
Q
dG = dE - dQ
dG=dE−dQ
系统平均能量:
E
=
∑
i
w
i
(
x
)
E
i
(
x
)
E = \sum\limits_i w_i(x)E_i(x)
E=i∑wi(x)Ei(x)
再结合
e
−
β
G
=
∑
i
e
−
β
E
i
e^{-\beta G} = \sum\limits_ie^{-\beta E_i}
e−βG=i∑e−βEi 有:
d
Q
=
d
E
−
d
G
=
∑
i
(
E
i
d
w
i
+
w
i
d
E
i
)
+
1
β
d
ln
∑
i
e
−
β
E
i
dQ = dE - dG = \sum\limits_i(E_idw_i + w_idE_i) + \frac{1}{\beta}d\ln\sum\limits_i e^{-\beta E_i}
dQ=dE−dG=i∑(Eidwi+widEi)+β1dlni∑e−βEi
引入熵:
S
=
k
B
∑
i
w
i
ln
w
i
S = k_B\sum\limits_i w_i\ln w_i
S=kBi∑wilnwi
可见, d Q = T d S dQ = TdS dQ=TdS。推导方法:对上式微分,与 ∑ i d w i \sum_i dw_i ∑idwi 成正比的项都为 0,因为 ∑ i d w i \sum_i dw_i ∑idwi 必然为常数 1。
假定所有
w
i
w_i
wi 都相等,
Ω
=
1
w
i
\Omega = \frac{1}{w_i}
Ω=wi1 为状态
i
i
i 的微观状态数,那么:
S
=
k
B
ln
Ω
S = k_B \ln \Omega
S=kBlnΩ
注意到:
d
G
=
d
E
−
T
d
S
=
d
(
E
−
T
S
)
dG = dE - TdS = d(E - TS)
dG=dE−TdS=d(E−TS)
从而可将
G
G
G 表达为:
d
G
(
x
)
=
E
(
x
)
−
T
S
(
x
)
dG(x) = E(x) - TS(x)
dG(x)=E(x)−TS(x)
那么恢复力:
f
(
x
)
=
−
d
G
(
x
)
d
x
=
−
d
E
(
x
)
d
x
+
T
d
S
(
x
)
d
x
f(x) = -\frac{dG(x)}{dx} = -\frac{dE(x)}{dx} + \frac{TdS(x)}{dx}
f(x)=−dxdG(x)=−dxdE(x)+dxTdS(x)
T d S ( x ) d x \frac{TdS(x)}{dx} dxTdS(x) 可称为熵力 (Entropic Force)。
熵力的例子:
- 随机聚合物 (random polymer) 的恢复力
- 理想气体施加在活塞上的压力。
THERMODYNAMICS AND KINETICS OF MECHANICALLY RUPTURED BONDS
如图,总自由能为:
G
~
(
X
,
x
)
=
G
(
x
)
+
γ
(
X
−
x
)
2
/
2
\tilde{G}(X, x) = G(x) + \gamma(X-x)^2/2
G~(X,x)=G(x)+γ(X−x)2/2
stiff trap 近似下 x ≈ X ⇒ G ~ ( X , x ) ≈ G ( x ) x\approx X \Rightarrow \tilde{G}(X, x) \approx G(x) x≈X⇒G~(X,x)≈G(x)
而事实上:
G
~
(
X
,
x
)
=
G
(
x
)
+
γ
X
2
/
2
−
γ
X
x
+
γ
x
2
/
2
\tilde{G}(X, x) = G(x) + \gamma X^2/2 - \gamma Xx + \sout{\gamma x^2/2}
G~(X,x)=G(x)+γX2/2−γXx+γx2/2
soft pulling 意味着分子的刚性远强于 trap 的:
G
(
x
)
=
γ
0
x
2
/
2
,
γ
0
≫
γ
G(x) = \gamma_0x^2/2,\ \gamma_0\gg \gamma
G(x)=γ0x2/2, γ0≫γ
扔掉小量,得到近似:
G
~
(
X
,
x
)
≈
G
(
x
)
−
f
x
+
γ
X
2
/
2
\tilde{G}(X, x) \approx G(x) - fx + \gamma X^2/2
G~(X,x)≈G(x)−fx+γX2/2
其中
f
=
γ
X
f = \gamma X
f=γX。分子面临着和
x
x
x 有关的势函数:
G
f
(
x
)
=
G
(
x
)
−
f
x
G_f(x) = G(x) - fx
Gf(x)=G(x)−fx
其中
−
f
x
-fx
−fx 类似于重力势能
−
m
g
h
-mgh
−mgh,
f
=
X
γ
f=X\gamma
f=Xγ 为常数。拉伸量
x
x
x 对应的概率分布为:
w
f
(
x
)
=
A
e
−
β
G
f
(
x
)
w_f(x) = Ae^{-\beta G_f(x)}
wf(x)=Ae−βGf(x)
这个分布的最大值在
x
m
x_m
xm 处达到,满足:
d
G
f
(
x
m
)
d
x
=
G
′
(
x
m
)
−
f
=
0
\frac{dG_f(x_m)}{dx} = G'(x_m) - f = 0
dxdGf(xm)=G′(xm)−f=0
f
=
G
′
(
x
m
)
f = G'(x_m)
f=G′(xm) 非负,因为这里
f
f
f 就是作用在分子上的力,它描述了最可能的拉伸量涨落。实际可以测到的是平均位置:
⟨
x
⟩
=
∫
d
x
x
w
f
(
x
)
\langle x\rangle = \int dx xw_f(x)
⟨x⟩=∫dxxwf(x)
考虑图示过程:
m
e
t
a
s
t
a
b
l
e
c
o
m
p
l
e
x
→
k
(
f
)
f
r
a
g
m
e
n
t
s
metastable complex \overset{k(f)}{\rightarrow} fragments
metastablecomplex→k(f)fragments
根据 TST:
k
(
f
)
=
v
e
−
Δ
G
(
f
)
k
B
T
k(f) = ve^{-\frac{\Delta G(f)}{k_BT}}
k(f)=ve−kBTΔG(f)
结合:
Δ
G
(
f
)
≈
Δ
G
(
0
)
−
f
Δ
x
\Delta G(f)\approx \Delta G(0) - f\Delta x
ΔG(f)≈ΔG(0)−fΔx
得到 Eyring-Zhurkov-Bell 公式:
k
(
f
)
=
k
(
0
)
e
f
Δ
x
k
B
T
k(f) = k(0)e^{\frac{f\Delta x}{k_BT}}
k(f)=k(0)ekBTfΔx
Slip Bonds vs Catch Bonds
前面得到的 Eyring-Zhurkov-Bell 公式
k
(
f
)
=
k
(
0
)
e
f
Δ
x
k
B
T
k(f) = k(0)e^{\frac{f\Delta x}{k_BT}}
k(f)=k(0)ekBTfΔx 告诉我们:速率随力指数增长。但有例外,势垒随力增加,也就是速率随力减小,这称为 catch bond。常以互锁形式出现:
1-D 模型不适用,改用二维:
G
(
x
,
y
)
=
−
k
B
T
ln
w
(
x
,
y
)
+
c
o
n
s
t
G(x, y) = -k_BT\ln w(x, y) + const
G(x,y)=−kBTlnw(x,y)+const
力变为:
G
f
(
x
,
y
)
=
G
(
x
,
y
)
−
f
x
G_f(x, y) = G(x, y) - fx
Gf(x,y)=G(x,y)−fx
变量 y y y 并不与机械力 f f f 耦合。
Force-induced Unfolding And Other Conformational Transitions Influenced By Forces
Extension to Other Scenarios: the Nanopore Experiments
如果力是电场
E
E
E 带来的,假定
E
E
E 是常电场,作用方向为
z
z
z 轴,那么相互作用能为:
−
E
∑
i
q
i
z
i
-E\sum\limits_i q_iz_i
−Ei∑qizi
令 f = ∑ i q i f = \sum\limits_i q_i f=i∑qi,定义有效坐标 x = ∑ i q i z i ∑ i q i x = \frac{\sum\limits_i q_iz_i}{\sum\limits_i q_i} x=i∑qii∑qizi
则相互作用能还是可以表达为:
−
f
x
-fx
−fx
Elastic Response of A Freely Jointed Chain Beyond Hooke’s Law
虎克定律 f = − 3 k B T x n l 2 f = -\frac{3k_BTx}{nl^2} f=−nl23kBTx 仅在形变量远小于充分拉伸分子长度时有效。
Beyond Hooke’s Law : the Chain Partition Function
FJC random walker 的位置
r
i
,
i
=
0
,
1
,
…
\mathbf{r_i},\ i=0,1,\dots
ri, i=0,1,… 满足
∣
r
i
−
r
i
−
1
∣
=
l
|\mathbf{r_i} - \mathbf{r_{i-1}}|=l
∣ri−ri−1∣=l。认为 FJC 链没有内能,总能就是外力做功的结果:
E
(
f
,
r
0
,
…
,
r
n
)
=
−
f
(
r
n
−
r
0
)
E(\mathbf{f}, \mathbf{r_0},\dots, \mathbf{r_n}) = -\mathbf{f}(\mathbf{r_n} - \mathbf{r_0})
E(f,r0,…,rn)=−f(rn−r0)
平均链拉伸课表达为:
⟨
r
n
−
r
0
⟩
=
∑
c
o
n
f
i
g
u
r
a
t
i
o
n
(
r
n
−
r
0
)
e
β
f
(
r
n
−
r
0
)
∑
c
o
n
f
i
g
u
r
a
t
i
o
n
e
β
f
(
r
n
−
r
0
)
\langle \mathbf{r_n} - \mathbf{r_0}\rangle = \frac{\sum\limits_{configuration}(\mathbf{r_n} - \mathbf{r_0})e^{\beta\mathbf{f}(\mathbf{r_n} - \mathbf{r_0})}}{\sum\limits_{configuration}e^{\beta\mathbf{f}(\mathbf{r_n} - \mathbf{r_0})}}
⟨rn−r0⟩=configuration∑eβf(rn−r0)configuration∑(rn−r0)eβf(rn−r0)
引入链配分函数:
q
=
∑
c
o
n
f
i
g
u
r
a
t
i
o
n
e
β
f
(
r
n
−
r
0
)
q = \sum\limits_{configuration}e^{\beta\mathbf{f}(\mathbf{r_n} - \mathbf{r_0})}
q=configuration∑eβf(rn−r0)
有:
⟨
r
n
−
r
0
⟩
=
1
q
β
d
q
d
f
=
k
B
T
d
ln
q
d
f
\langle \mathbf{r_n} - \mathbf{r_0}\rangle = \frac{1}{q\beta}\frac{dq}{d\mathbf{f}} = k_BT\frac{d\ln q}{d\mathbf{f}}
⟨rn−r0⟩=qβ1dfdq=kBTdfdlnq
Beyond Hooke’s Law : Mean Extension vs Force
若使用积分计算配分函数 (
l
i
=
r
i
−
r
i
−
1
,
r
n
−
r
0
=
l
1
+
…
l
n
l_i = r_i - r_{i-1},\ r_n-r_0 = l_1 + \dots l_n
li=ri−ri−1, rn−r0=l1+…ln):
q
=
C
∫
d
3
r
0
d
3
l
1
…
d
3
l
n
e
β
f
(
l
1
+
⋯
+
l
n
)
=
C
V
[
∫
d
3
l
exp
(
β
f
)
]
n
q = C\int d^3r_0 d^3 l_1\dots d^3 l_n e^{\beta\mathbf{f}(\mathbf{l_1} + \dots + \mathbf{l_n})} = CV[\int d^3\mathbf{l}\exp(\beta\mathbf{f})]^n
q=C∫d3r0d3l1…d3lneβf(l1+⋯+ln)=CV[∫d3lexp(βf)]n
其中有 V = ∫ d 3 d r 0 V = \int d^3d\mathrm{r_0} V=∫d3dr0
变换坐标系
l
=
(
∣
l
∣
,
θ
,
ϕ
)
l = (|\mathbf{l}|, \theta, \phi)
l=(∣l∣,θ,ϕ),得到:
l
x
=
l
sin
θ
cos
ϕ
l_x = l\sin\theta\cos\phi
lx=lsinθcosϕ
l
y
=
l
sin
θ
sin
ϕ
l_y = l\sin\theta\sin\phi
ly=lsinθsinϕ
l
z
=
l
cos
θ
l_z = l\cos\theta
lz=lcosθ
此时
f
\mathbf{f}
f 并不是力,而是:
f
=
f
l
cos
θ
\mathbf{f} = fl\cos\theta
f=flcosθ
∫ d 3 l exp ( β f ) = ∫ 0 2 π d ϕ ∫ 0 π l 2 sin θ exp ( β f l cos θ ) d θ ∝ ( exp ( β f l ) − exp ( − β f l ) β f l ) \int d^3\mathbf{l}\exp(\beta\mathbf{f}) = \int_0^{2\pi}d\phi\int_0^{\pi}l^2\sin\theta\exp(\beta fl\cos\theta) d\theta \propto (\frac{\exp(\beta fl) - \exp(-\beta fl)}{\beta fl}) ∫d3lexp(βf)=∫02πdϕ∫0πl2sinθexp(βflcosθ)dθ∝(βflexp(βfl)−exp(−βfl))
那么 q ∝ ( exp ( β f l ) − exp ( − β f l ) β f l ) n q\propto (\frac{\exp(\beta fl) - \exp(-\beta fl)}{\beta fl})^n q∝(βflexp(βfl)−exp(−βfl))n
因此:
∣
⟨
r
n
−
r
0
⟩
∣
=
k
B
T
d
ln
q
d
f
=
k
B
T
n
[
l
k
B
T
c
o
t
h
(
f
l
k
B
T
)
−
1
f
]
|\langle \mathbf{r_n} - \mathbf{r_0}\rangle| = k_BT\frac{d\ln q}{df} = k_BTn[\frac{l}{k_BT}coth(\frac{fl}{k_BT}) - \frac{1}{f}]
∣⟨rn−r0⟩∣=kBTdfdlnq=kBTn[kBTlcoth(kBTfl)−f1]
当
f
l
≪
k
B
T
fl \ll k_BT
fl≪kBT 时,
c
o
t
h
a
≈
1
/
a
+
a
/
3
+
…
cotha \approx 1/a + a/3 + \dots
cotha≈1/a+a/3+…:
∣
⟨
r
n
−
r
0
⟩
∣
=
n
l
2
f
3
k
B
T
|\langle \mathbf{r_n} - \mathbf{r_0}\rangle| = \frac{nl^2f}{3k_BT}
∣⟨rn−r0⟩∣=3kBTnl2f
显示出 Hooke 定律行为。
当
f
l
≫
k
B
T
fl \gg k_BT
fl≫kBT 时:
∣
⟨
r
n
−
r
0
⟩
∣
→
n
l
[
1
−
k
B
T
f
l
+
2
e
−
2
f
l
k
B
T
]
|\langle \mathbf{r_n} - \mathbf{r_0}\rangle| \to nl[1 - \frac{k_BT}{fl} + 2e^{-2\frac{fl}{k_BT}}]
∣⟨rn−r0⟩∣→nl[1−flkBT+2e−2kBTfl]
接近完全拉伸,Hooke 定律失效。
Chapter IX Non-equilibrium Thermodynamics of Single Molecules
The Gibbs Free Energy
焓的定义:
H
≡
U
+
p
V
H \equiv U + pV
H≡U+pV
要凭空创造出一个系统,先要给予能量 U U U,再加上 p V pV pV 来推开气体。
吉布斯自由能的定义:
G
≡
U
−
T
S
+
p
V
G \equiv U - TS + pV
G≡U−TS+pV
大小为 T S TS TS 的能量会自发流入,再减去 T S TS TS 即可。
Gibbs Free Energy or Helmholtz Free Energy
G 是的一定温度、压力下相的稳定性的量度,
G
=
f
(
T
,
p
)
G = f(T, p)
G=f(T,p)。满足:
d
G
=
V
d
p
−
S
d
T
dG = Vdp - SdT
dG=Vdp−SdT
体系自由能减少量 = 可提供环境最大非体积功(有用功)。
A 衡量的是是系统能做的最大总功,
A
=
f
(
T
,
V
)
A = f(T, V)
A=f(T,V)
A
=
U
−
T
S
A = U - TS
A=U−TS
d
A
=
−
S
d
T
−
p
d
V
dA = -SdT - pdV
dA=−SdT−pdV
这里使用
G
G
G 作为自由能,
q
q
q 为配分函数:
G
=
−
k
B
T
ln
q
G = -k_BT\ln q
G=−kBTlnq
q
=
e
−
G
k
B
T
q = e^{-\frac{G}{k_BT}}
q=e−kBTG
Extension and Contraction of Molecular Springs
考虑在势场
γ
(
X
−
x
)
2
/
2
\gamma(X-x)^2/2
γ(X−x)2/2 下,分子由
X
(
0
)
=
x
1
X(0)=x_1
X(0)=x1 被拉拽至
X
(
τ
)
=
x
2
X(\tau)=x_2
X(τ)=x2。假设有:
G
(
x
2
)
−
G
(
x
1
)
≫
k
B
T
G(x_2) - G(x_1) \gg k_BT
G(x2)−G(x1)≫kBT
则分子可在外力下达到不太可能占据的状态。
The Work Performed On the Molecule by the Pulling Device
拉拽设备做的功可由每个瞬间的力对位移积分得到:
W
12
=
∫
0
τ
f
(
t
)
d
x
(
t
)
=
∫
0
τ
γ
[
X
(
t
)
−
x
(
t
)
]
x
˙
(
t
)
d
t
W_{12} = \int_0^{\tau}f(t)dx(t) = \int_0^{\tau}\gamma[X(t) - x(t)]\dot{x}(t)dt
W12=∫0τf(t)dx(t)=∫0τγ[X(t)−x(t)]x˙(t)dt
x
x
x 为考虑
γ
[
X
(
t
)
−
x
(
t
)
]
\gamma[X(t) - x(t)]
γ[X(t)−x(t)] 时的 (过阻尼) Langevin 方程的解:
0
=
−
γ
(
x
−
X
)
−
G
′
(
x
)
x
˙
−
η
x
˙
+
R
(
t
)
0 = -\gamma(x - X) - G'(x)\dot{x} - \eta\dot{x} + R(t)
0=−γ(x−X)−G′(x)x˙−ηx˙+R(t)
移项后两边同乘
x
˙
\dot{x}
x˙:
γ
(
X
−
x
)
=
G
′
(
x
)
x
˙
x
˙
+
η
x
˙
2
−
R
(
t
)
d
o
t
x
\gamma(X - x) = G'(x)\dot{x}\dot{x} + \eta\dot{x}^2 - R(t)dot{x}
γ(X−x)=G′(x)x˙x˙+ηx˙2−R(t)dotx
功可表达为:
W
12
=
G
[
x
(
τ
)
]
−
G
[
x
(
0
)
]
+
η
∫
0
τ
d
t
x
˙
−
∫
0
τ
d
t
R
(
t
)
x
˙
(
t
)
W_{12} = G[x(\tau)] - G[x(0)] + \eta\int_0^{\tau}dt\dot{x} - \int_0^{\tau}dtR(t)\dot{x}(t)
W12=G[x(τ)]−G[x(0)]+η∫0τdtx˙−∫0τdtR(t)x˙(t)
拉伸过程很慢,
x
˙
→
0
\dot{x}\to 0
x˙→0,后两项忽略:
W
12
=
G
[
x
(
τ
)
]
−
G
[
x
(
0
)
]
W_{12} = G[x(\tau)] - G[x(0)]
W12=G[x(τ)]−G[x(0)]
拉拽设备足够 stiff 时:
x
(
0
)
≈
x
1
=
X
(
0
)
;
x
(
τ
)
≈
x
2
=
X
(
τ
)
x(0)\approx x_1 = X(0);\ x(\tau)\approx x_2 = X(\tau)
x(0)≈x1=X(0); x(τ)≈x2=X(τ)
从而有:
W
12
=
G
(
x
2
)
−
G
(
x
1
)
W_{12} = G(x_2) - G(x_1)
W12=G(x2)−G(x1)
x 1 , x 2 x_1,\ x_2 x1, x2 为实验可控量。
令:
W
12
=
G
[
x
(
τ
)
]
−
G
[
x
(
0
)
]
+
η
∫
0
τ
d
t
x
˙
−
∫
0
τ
d
t
R
(
t
)
x
˙
(
t
)
=
Δ
G
+
W
d
i
s
+
W
R
\begin{align*} W_{12} &= G[x(\tau)] - G[x(0)] + \eta\int_0^{\tau}dt\dot{x} - \int_0^{\tau}dtR(t)\dot{x}(t) \\ &= \Delta G + W_{dis} + W_R \end{align*}
W12=G[x(τ)]−G[x(0)]+η∫0τdtx˙−∫0τdtR(t)x˙(t)=ΔG+Wdis+WR
第一项为自由能变化量;第二项为摩擦力耗散下产生的热量;第三项由随机导致, W R > 0 W_R \gt 0 WR>0 有助于拉伸; W R < 0 W_R \lt 0 WR<0 对拉伸起反作用。
由于
⟨
R
(
t
)
⟩
=
0
\langle R(t)\rangle = 0
⟨R(t)⟩=0,与
x
(
t
)
x(t)
x(t) 无关:
⟨
W
R
⟩
=
0
\langle W_R\rangle = 0
⟨WR⟩=0
且:
W
d
i
s
≥
0
W_{dis} \ge 0
Wdis≥0
可见:
⟨
W
12
⟩
=
Δ
G
+
⟨
W
d
i
s
⟩
+
⟨
W
R
⟩
≥
Δ
G
≈
G
(
x
2
)
−
G
(
x
1
)
\langle W_{12}\rangle = \Delta G + \langle W_{dis}\rangle + \langle W_R\rangle \ge \Delta G\approx G(x_2) - G(x_1)
⟨W12⟩=ΔG+⟨Wdis⟩+⟨WR⟩≥ΔG≈G(x2)−G(x1)
或:
⟨
W
12
⟩
≥
G
(
x
2
)
−
G
(
x
1
)
\langle W_{12}\rangle \ge G(x_2) - G(x_1)
⟨W12⟩≥G(x2)−G(x1)
Contraction : the Work Performed On the Pulling Device by the Molecule
分子在拉拽设备上做的功:
W
12
⋆
=
−
∫
0
τ
f
(
t
)
d
x
(
t
)
=
∫
0
τ
γ
[
X
(
t
)
−
x
(
t
)
]
x
˙
(
t
)
d
t
W_{12}^\star = -\int_0^{\tau}f(t)dx(t) = \int_0^{\tau}\gamma[X(t) - x(t)]\dot{x}(t)dt
W12⋆=−∫0τf(t)dx(t)=∫0τγ[X(t)−x(t)]x˙(t)dt
类似地,可以得到:
W
12
⋆
=
G
[
x
(
0
)
]
−
G
[
x
(
τ
)
]
−
η
∫
0
τ
d
t
x
˙
+
∫
0
τ
d
t
R
(
t
)
x
˙
(
t
)
=
Δ
G
−
W
d
i
s
+
W
R
\begin{align*} W_{12}^\star &= G[x(0)] - G[x(\tau)] - \eta\int_0^{\tau}dt\dot{x} + \int_0^{\tau}dtR(t)\dot{x}(t) \\ &= \Delta G - W_{dis} + W_R \end{align*}
W12⋆=G[x(0)]−G[x(τ)]−η∫0τdtx˙+∫0τdtR(t)x˙(t)=ΔG−Wdis+WR
第一项为自由能变化量,与拉伸的始末状态相反;第二项为摩擦力耗散下产生的热量;第三项由随机导致, W R > 0 W_R \gt 0 WR>0 有助收缩; W R < 0 W_R \lt 0 WR<0 对收缩起反作用。
也有:
⟨
W
12
⋆
⟩
=
Δ
G
−
⟨
W
d
i
s
⟩
+
⟨
W
R
⟩
≤
Δ
G
≈
G
(
x
2
)
−
G
(
x
1
)
\langle W_{12}^\star\rangle = \Delta G - \langle W_{dis}\rangle + \langle W_R\rangle \le \Delta G\approx G(x_2) - G(x_1)
⟨W12⋆⟩=ΔG−⟨Wdis⟩+⟨WR⟩≤ΔG≈G(x2)−G(x1)
或:
⟨
W
12
⋆
⟩
≤
G
(
x
2
)
−
G
(
x
1
)
\langle W_{12}^\star\rangle \le G(x_2) - G(x_1)
⟨W12⋆⟩≤G(x2)−G(x1)
可见
⟨
W
12
⟩
≥
⟨
W
12
⋆
⟩
\langle W_{12}\rangle \ge \langle W_{12}^\star\rangle
⟨W12⟩≥⟨W12⋆⟩
Supersystem and the work
Supersystem: 考虑所有分子的自由度,再加上足够的溶剂分子作为一个鼓励体系。使用 r ⃗ , p ⃗ \vec{r},\ \vec{p} r, p 作为每个粒子的坐标和动量。
初始能量为 E 0 ( r ⃗ , p ⃗ ) E_0(\vec{r},\ \vec{p}) E0(r, p) (与时间无关)。
引入一个与时间有关的微扰:
V
(
X
(
t
)
,
r
⃗
)
=
1
2
γ
[
x
(
t
)
−
X
(
t
)
]
2
V(X(t),\ \vec{r}) = \frac{1}{2}\gamma[x(t) - X(t)]^2
V(X(t), r)=21γ[x(t)−X(t)]2,总能变为:
E
(
r
⃗
,
p
⃗
)
=
E
0
(
r
⃗
,
p
⃗
)
+
V
(
X
(
t
)
,
r
⃗
)
E(\vec{r},\ \vec{p}) = E_0(\vec{r},\ \vec{p}) + V(X(t),\ \vec{r})
E(r, p)=E0(r, p)+V(X(t), r)。则系统根据下式演化:
d
E
d
t
=
−
d
V
d
t
=
γ
[
X
(
t
)
−
x
(
r
⃗
)
]
X
˙
\frac{dE}{dt} = -\frac{dV}{dt} = \gamma[X(t) - x(\vec{r})]\dot{X}
dtdE=−dtdV=γ[X(t)−x(r)]X˙
f
(
t
)
=
γ
[
X
(
t
)
−
x
(
r
⃗
)
]
X
˙
f(t) = \gamma[X(t) - x(\vec{r})]\dot{X}
f(t)=γ[X(t)−x(r)]X˙
W
12
=
∫
0
τ
f
(
t
)
d
x
(
t
)
=
∫
0
τ
γ
[
X
(
t
)
−
x
(
t
)
]
x
(
t
)
˙
d
t
W_{12} = \int_0^\tau f(t)dx(t) = \int_0^\tau \gamma[X(t) - x(t)]\dot{x(t)}dt
W12=∫0τf(t)dx(t)=∫0τγ[X(t)−x(t)]x(t)˙dt
W
~
12
=
∫
0
τ
f
(
t
)
d
X
(
t
)
=
∫
0
τ
γ
[
X
(
t
)
−
x
(
t
)
]
X
(
t
)
˙
d
t
\tilde{W}_{12} = \int_0^\tau f(t)dX(t) = \int_0^\tau \gamma[X(t) - x(t)]\dot{X(t)}dt
W~12=∫0τf(t)dX(t)=∫0τγ[X(t)−x(t)]X(t)˙dt
W
12
W_{12}
W12 和
W
~
12
\tilde{W}_{12}
W~12 分别是使用分子拉伸量和控制设备坐标的表达式,那么有:
δ
W
12
=
W
~
12
−
W
12
=
∫
0
τ
γ
(
X
−
x
)
(
X
˙
−
x
˙
)
d
t
=
1
2
∫
0
τ
d
d
t
[
γ
(
X
−
x
)
2
]
d
t
=
γ
[
X
(
τ
)
−
x
(
τ
)
]
2
2
−
γ
[
X
(
0
)
−
x
(
0
)
]
2
2
\delta W_{12} = \tilde{W}_{12} - W_{12} = \int_0^\tau\gamma(X - x)(\dot{X} - \dot{x})dt = \frac{1}{2}\int_0^\tau\frac{d}{dt}[\gamma(X - x)^2]dt = \frac{\gamma[X(\tau) - x(\tau)]^2}{2} - \frac{\gamma[X(0) - x(0)]^2}{2}
δW12=W~12−W12=∫0τγ(X−x)(X˙−x˙)dt=21∫0τdtd[γ(X−x)2]dt=2γ[X(τ)−x(τ)]2−2γ[X(0)−x(0)]2
δ W 12 \delta W_{12} δW12 为设备额外存储或释放的能量。
Exact Relationships Between Free Energy and Nonequilibrium Work
已经得到:
W
12
≥
G
(
x
2
)
−
G
(
x
1
)
≥
W
12
⋆
W_{12} \ge G(x_2) - G(x_1) \ge W_{12}^\star
W12≥G(x2)−G(x1)≥W12⋆
Chris Jarzynski 发现:
⟨
e
−
W
~
12
k
B
T
⟩
=
e
−
G
2
−
G
1
k
B
T
\langle e^{-\frac{\tilde{W}_{12}}{k_BT}}\rangle = e^{-\frac{G_2 - G_1}{k_BT}}
⟨e−kBTW~12⟩=e−kBTG2−G1
如果使用足够 stiff 的设备:
⟨
e
−
W
~
12
k
B
T
⟩
=
e
−
G
(
x
2
)
−
G
(
x
1
)
k
B
T
\langle e^{-\frac{\tilde{W}_{12}}{k_BT}}\rangle = e^{-\frac{G(x_2) - G(x_1)}{k_BT}}
⟨e−kBTW~12⟩=e−kBTG(x2)−G(x1)
剩余功有:
⟨
e
−
Δ
W
~
12
k
B
T
⟩
=
1
\langle e^{-\frac{\Delta \tilde{W}_{12}}{k_BT}}\rangle = 1
⟨e−kBTΔW~12⟩=1
其中剩余功 Δ W ~ 12 = W ~ 12 − [ G ( x 2 ) − G ( x 1 ) ] \Delta \tilde{W}_{12} = \tilde{W}_{12} - [G(x_2) - G(x_1)] ΔW~12=W~12−[G(x2)−G(x1)]
The Proof of Jarzynski Identity
始态: E 1 , X ( 0 ) = x 1 E_1,\ X(0)=x_1 E1, X(0)=x1,输入拉力的功 W ~ 12 \tilde{W}_{12} W~12 后终态: E 2 , X ( τ ) = x 2 E_2,\ X(\tau)=x_2 E2, X(τ)=x2
总能可表达为: E ( r ⃗ ( t ) , p ⃗ ( t ) ; t ) = E 0 ( r ⃗ ( t ) , p ⃗ ( t ) ) + V ( X ( t ) , r ⃗ ) E(\vec{r}(t),\ \vec{p}(t);\ t) = E_0(\vec{r}(t),\ \vec{p}(t)) + V(X(t),\ \vec{r}) E(r(t), p(t); t)=E0(r(t), p(t))+V(X(t), r)
始态处于热平衡,初始位置的概率分布与 Boltzmann 因子 exp ( − E 1 k B T ) \exp(-\frac{E_1}{k_BT}) exp(−kBTE1) 成正比。
其中 E 1 ( r ⃗ ( 0 ) , p ⃗ ( 0 ) ) = E ( r ⃗ ( 0 ) , p ⃗ ( 0 ) ; 0 ) = E 0 ( r ⃗ ( 0 ) , p ⃗ ( 0 ) ) + V ( x 1 , r ⃗ [ 0 ] ) E_1(\vec{r}(0),\ \vec{p}(0)) = E(\vec{r}(0),\ \vec{p}(0);\ 0) = E_0(\vec{r}(0),\ \vec{p}(0)) + V(x_1,\ \vec{r}[0]) E1(r(0), p(0))=E(r(0), p(0); 0)=E0(r(0), p(0))+V(x1, r[0])
W
~
12
\tilde{W}_{12}
W~12 是通过与初始分布有关的
f
f
f 积分得到的,因此任何
W
~
12
\tilde{W}_{12}
W~12 的函数
ϕ
(
W
~
12
)
\phi(\tilde{W}_{12})
ϕ(W~12) 可根据初始分布计算平均值。令
ϕ
(
W
~
12
)
=
e
−
W
~
12
k
B
T
\phi(\tilde{W}_{12}) = e^{-\frac{\tilde{W}_{12}}{k_BT}}
ϕ(W~12)=e−kBTW~12,其平均可由下式计算:
⟨
e
−
W
~
12
k
B
T
⟩
=
q
1
−
1
∫
d
r
⃗
(
0
)
d
p
⃗
(
0
)
exp
(
−
W
~
12
k
B
T
)
exp
(
−
E
1
(
r
⃗
(
0
)
,
p
⃗
(
0
)
)
k
B
T
)
\langle e^{-\frac{\tilde{W}_{12}}{k_BT}}\rangle = q_1^{-1}\int d\vec{r}(0)d\vec{p}(0)\exp (-\frac{\tilde{W}_{12}}{k_BT}) \exp (\frac{-E_1(\vec{r}(0),\ \vec{p}(0))}{k_BT})
⟨e−kBTW~12⟩=q1−1∫dr(0)dp(0)exp(−kBTW~12)exp(kBT−E1(r(0), p(0)))
其中 q 1 q_1 q1 为 supersystem 与 E 1 E_1 E1 有关的配分函数。
注意到, E 1 ( r ⃗ ( 0 ) , p ⃗ ( 0 ) ) + W ~ 12 = E 2 ( r ⃗ ( τ ) , p ⃗ ( τ ) ) = E 0 ( r ⃗ ( τ ) , p ⃗ ( τ ) ) + V [ x 2 , r ⃗ ( τ ) ] E_1(\vec{r}(0),\ \vec{p}(0)) + \tilde{W}_{12} = E_2(\vec{r}(\tau),\ \vec{p}(\tau)) = E_0(\vec{r}(\tau),\ \vec{p}(\tau)) + V[x_2, \vec{r}(\tau)] E1(r(0), p(0))+W~12=E2(r(τ), p(τ))=E0(r(τ), p(τ))+V[x2,r(τ)]
可得:
⟨
e
−
W
~
12
k
B
T
⟩
=
q
1
−
1
∫
d
r
⃗
(
0
)
d
p
⃗
(
0
)
exp
(
−
E
2
(
r
⃗
(
τ
)
,
p
⃗
(
τ
)
)
k
B
T
)
\langle e^{-\frac{\tilde{W}_{12}}{k_BT}}\rangle = q_1^{-1}\int d\vec{r}(0)d\vec{p}(0)\exp (\frac{-E_2(\vec{r}(\tau),\ \vec{p}(\tau))}{k_BT})
⟨e−kBTW~12⟩=q1−1∫dr(0)dp(0)exp(kBT−E2(r(τ), p(τ)))
根据 Liouville 定理: 沿经典轨迹相空间体积守恒。那么:
⟨
e
−
W
~
12
k
B
T
⟩
=
q
2
/
q
1
\langle e^{-\frac{\tilde{W}_{12}}{k_BT}}\rangle = q_2/q_1
⟨e−kBTW~12⟩=q2/q1
其中 q 2 q_2 q2 为 supersystem 与 E 2 E_2 E2 有关的配分函数。
定义联合配分函数
q
1
,
2
=
e
−
G
1
,
2
k
B
T
q_{1, 2} = e^{-\frac{G_{1, 2}}{k_BT}}
q1,2=e−kBTG1,2,从而:
⟨
e
−
W
~
12
k
B
T
⟩
=
exp
[
−
G
2
−
G
1
k
B
T
]
\langle e^{-\frac{\tilde{W}_{12}}{k_BT}}\rangle = \exp[-\frac{G_2 - G_1}{k_BT}]
⟨e−kBTW~12⟩=exp[−kBTG2−G1]
G
1
,
G
2
G_1,\ G_2
G1, G2 为对应于
q
1
,
q
2
q_1,\ q_2
q1, q2 的配分函数,由于
q
1
,
q
2
q_1,\ q_2
q1, q2 是与拉拽设备刚度有关的配分函数,不是分子内部属性。因此,下面的讨论将限制在在刚性弹簧之内,重写配分函数为:
q
1
,
2
=
∫
d
r
⃗
d
p
⃗
e
−
E
0
(
r
⃗
,
p
⃗
)
k
B
T
e
−
γ
(
x
1
,
2
−
x
)
2
2
k
B
T
q_{1, 2} = \int d\vec{r}d\vec{p}e^{-\frac{E_0(\vec{r},\ \vec{p})}{k_BT}}e^{-\frac{\gamma(x_{1, 2} - x)^2}{2k_BT}}
q1,2=∫drdpe−kBTE0(r, p)e−2kBTγ(x1,2−x)2
γ
→
∞
\gamma\to\infty
γ→∞ 有:
q
1
,
2
=
γ
2
π
k
B
T
∫
d
r
⃗
d
p
⃗
e
−
E
0
(
r
⃗
,
p
⃗
)
k
B
T
δ
(
x
1
,
2
−
x
)
∝
w
(
x
1
,
2
)
=
e
−
G
(
x
1
,
2
)
k
B
T
q_{1, 2} = \sqrt{\frac{\gamma}{2\pi k_BT}}\int d\vec{r}d\vec{p}e^{-\frac{E_0(\vec{r},\ \vec{p})}{k_BT}}\delta(x_{1, 2} - x) \propto w(x_{1, 2}) = e^{-\frac{G(x_{1, 2})}{k_BT}}
q1,2=2πkBTγ∫drdpe−kBTE0(r, p)δ(x1,2−x)∝w(x1,2)=e−kBTG(x1,2)
δ
\delta
δ 函数由下式定义:
δ
(
x
)
=
lim
b
→
0
1
∣
b
∣
π
e
−
(
x
/
b
)
2
\delta(x) = \lim\limits_{b\to0}\frac{1}{|b|\sqrt{\pi}}e^{-(x/b)^2}
δ(x)=b→0lim∣b∣π1e−(x/b)2
结合
q
1
,
2
∝
w
(
x
1
,
2
)
=
e
−
G
(
x
1
,
2
)
k
B
T
q_{1, 2} \propto w(x_{1, 2}) = e^{-\frac{G(x_{1, 2})}{k_BT}}
q1,2∝w(x1,2)=e−kBTG(x1,2) 和
⟨
e
−
W
~
12
k
B
T
⟩
=
q
2
/
q
1
\langle e^{-\frac{\tilde{W}_{12}}{k_BT}}\rangle = q_2/q_1
⟨e−kBTW~12⟩=q2/q1 有:
⟨
e
−
W
~
12
k
B
T
⟩
=
exp
[
−
G
(
x
2
)
−
G
(
x
1
)
k
B
T
]
\langle e^{-\frac{\tilde{W}_{12}}{k_BT}}\rangle = \exp[-\frac{G(x_2) - G(x_1)}{k_BT}]
⟨e−kBTW~12⟩=exp[−kBTG(x2)−G(x1)]
给出了实际联系拉拽设备所做的功和分子以及自由能差的方程。
Math Connections Between the Inequalities & the Identities
Jensen’s 不等式:
ϕ
(
E
[
X
]
)
≤
E
[
ϕ
(
X
)
]
\phi(E[X]) \le E[\phi(X)]
ϕ(E[X])≤E[ϕ(X)]
因此: e ⟨ a ⟩ ≤ ⟨ e a ⟩ e^{\langle a\rangle} \le {\langle e^a\rangle} e⟨a⟩≤⟨ea⟩
令
a
=
W
~
12
a = \tilde{W}_{12}
a=W~12 有:
e
−
⟨
W
~
12
⟩
k
B
T
≤
⟨
e
−
W
~
12
k
B
T
⟩
=
exp
[
−
G
(
x
2
)
−
G
(
x
1
)
k
B
T
]
e^{-\frac{\langle \tilde{W}_{12}\rangle}{k_BT}} \le \langle e^{-\frac{\tilde{W}_{12}}{k_BT}}\rangle = \exp[-\frac{G(x_2) - G(x_1)}{k_BT}]
e−kBT⟨W~12⟩≤⟨e−kBTW~12⟩=exp[−kBTG(x2)−G(x1)]
那么 ⟨ W ~ 12 ⟩ ≥ G ( x 2 ) − G ( x 1 ) \langle \tilde{W}_{12}\rangle \ge G(x_2) - G(x_1) ⟨W~12⟩≥G(x2)−G(x1)
类似地 ⟨ W ~ 12 ⋆ ⟩ = − ⟨ W ~ 12 ⟩ ≤ G ( x 2 ) − G ( x 1 ) \langle \tilde{W}_{12}^\star\rangle = - \langle \tilde{W}_{12}\rangle \le G(x_2) - G(x_1) ⟨W~12⋆⟩=−⟨W~12⟩≤G(x2)−G(x1)
根据剩余功定义
Δ
W
~
12
=
W
~
12
−
[
G
(
x
2
)
−
G
(
x
1
)
]
\Delta \tilde{W}_{12} = \tilde{W}_{12} - [G(x_2) - G(x_1)]
ΔW~12=W~12−[G(x2)−G(x1)] 可得:
⟨
Δ
W
~
12
≥
0
⟩
\langle \Delta \tilde{W}_{12} \ge 0\rangle
⟨ΔW~12≥0⟩
但根据 Jarzynski’s equality:
⟨
e
−
Δ
W
~
12
k
B
T
⟩
=
1
\langle e^{-\frac{\Delta\tilde{W}_{12}}{k_BT}}\rangle = 1
⟨e−kBTΔW~12⟩=1
说明 Δ W ~ 12 \Delta\tilde{W}_{12} ΔW~12 又会有负值出现,负值发生的情况很稀有,但将其放在指数上会有显著影响。
The Crook’s Fluctuation Theorem
两个方向的功 (
1
→
2
,
2
→
1
1\to2,\ 2\to1
1→2, 2→1) 的分布满足:
w
12
(
W
~
)
=
exp
[
W
−
G
2
+
G
1
k
B
T
]
w
21
∗
(
W
~
)
w_{12}(\tilde{W}) = \exp[\frac{W - G_2 + G_1}{k_BT}]w_{21}^*(\tilde{W})
w12(W~)=exp[kBTW−G2+G1]w21∗(W~)
这个方程告诉我们当 W ~ \tilde{W} W~ 正好等于 G 2 − G 1 G_2 - G_1 G2−G1 时,拉拽设备做的功等于分子松弛过程做的功。拉拽设备刚性足够大时, W ~ \tilde{W} W~ 就等于始末位置自由能差。
The Crook’s Fluctuation Theorem and Jarzynski’s Identity
在 Crook’s Fluctuation Theorem 两边同乘
exp
[
−
W
~
k
B
T
]
\exp[-\frac{\tilde{W}}{k_BT}]
exp[−kBTW~] 后积分,注意到
w
12
(
W
~
)
,
w
21
∗
(
W
~
)
w_{12}(\tilde{W}),\ w_{21}^*(\tilde{W})
w12(W~), w21∗(W~) 都是归一化的,那么可以得到:
⟨
exp
[
−
W
~
k
B
T
]
⟩
=
exp
[
−
G
2
−
G
1
k
B
T
]
\langle \exp[-\frac{\tilde{W}}{k_BT}]\rangle = \exp[-\frac{G_2 - G_1}{k_BT}]
⟨exp[−kBTW~]⟩=exp[−kBTG2−G1]
也就是 Jarzynski Identity。
Energy Dissipation In Biological Molecules: Sacrificial Bonds And Molecular Shock Absorbers
Chapter X Single-Molecule Phenomena in Living Systems
Equilibrium vs non-equilibrium in living systems
平衡与非平衡通常与各种时空内容相联系,活体并不与其环境达成平衡。
- 糖分燃烧,体内的分子机械显然是非平衡的。
- 我们身体很好地保持温度,是较为平衡的。
完全的平衡意味着与时间无关,也就不是生命,生命可看成是部分平衡。
Single-molecule view of enzyme catalysis
无酶参与的反应:
R
↔
k
P
→
R
k
R
→
P
P
\mathrm{R} \xleftrightarrow[k_{P\to R}]{k_{R\to P}} \mathrm{P}
RkR→P
kP→RP
有:
d
N
R
/
d
t
=
−
d
N
P
/
d
t
=
−
k
R
→
P
N
R
+
k
P
→
R
N
P
dN_R/dt = -dN_P/dt = -k_{R\to P}N_R + k_{P\to R}N_P
dNR/dt=−dNP/dt=−kR→PNR+kP→RNP
[
R
]
=
N
R
/
V
,
d
[
R
]
/
d
t
=
−
d
[
P
]
/
d
t
=
−
k
R
→
P
[
R
]
+
k
P
→
R
[
P
]
[R] = N_R/V,\ d[R]/dt = -d[P]/dt = -k_{R\to P}[R] + k_{P\to R}[P]
[R]=NR/V, d[R]/dt=−d[P]/dt=−kR→P[R]+kP→R[P]
Michaelis-Menten (MM) mechanism (米氏机理,酶参与):
E
+
R
↔
k
−
1
k
1
E
R
↔
k
−
2
k
2
E
+
P
\mathrm{E + R} \xleftrightarrow[k_{-1}]{k_1} ER \xleftrightarrow[k_{-2}]{k_2} \mathrm{E + P}
E+Rk1
k−1ERk2
k−2E+P
还有:
d
[
R
]
/
d
t
=
−
k
1
[
E
]
[
R
]
+
k
−
1
[
E
R
]
d[R]/dt = -k_1[E][R] + k_{-1}[ER]
d[R]/dt=−k1[E][R]+k−1[ER]
d
[
E
R
]
/
d
t
=
k
1
[
E
]
[
R
]
+
k
−
2
[
E
]
[
P
]
−
k
2
[
E
R
]
−
k
−
1
[
E
R
]
d[ER]/dt = k_1[E][R] + k_{-2}[E][P] - k_{2}[ER] - k_{-1}[ER]
d[ER]/dt=k1[E][R]+k−2[E][P]−k2[ER]−k−1[ER]
d
[
P
]
/
d
t
=
k
2
[
E
R
]
−
k
−
2
[
E
]
[
P
]
d[P]/dt = k_2[ER] - k_{-2}[E][P]
d[P]/dt=k2[ER]−k−2[E][P]
d
[
E
]
/
d
t
=
−
k
1
[
E
]
[
R
]
−
k
−
2
[
E
]
[
P
]
+
k
2
[
E
R
]
+
k
−
1
[
E
R
]
d[E]/dt = -k_1[E][R] - k_{-2}[E][P] + k_{2}[ER] + k_{-1}[ER]
d[E]/dt=−k1[E][R]−k−2[E][P]+k2[ER]+k−1[ER]
d
(
[
E
]
+
[
E
R
]
)
/
D
T
=
0
,
d
[
E
]
/
d
t
=
−
d
[
E
R
]
/
D
T
d([E] + [ER])/DT = 0,\ d[E]/dt = -d[ER]/DT
d([E]+[ER])/DT=0, d[E]/dt=−d[ER]/DT
MM 的一个重要特征的饱和效应 (saturation effect)
近似 1:过平衡假设
E
+
R
↔
k
−
1
k
1
E
R
→
k
2
E
+
P
k
2
≪
k
−
1
\mathrm{E + R} \xleftrightarrow[k_{-1}]{k_1} ER \overset{k_2}{\rightarrow} \mathrm{E + P}\ \ k_2 \ll k_{-1}
E+Rk1
k−1ER→k2E+P k2≪k−1
d [ P ] / d t = k 1 k 2 k − 1 [ E ] [ R ] d[P]/dt=\frac{k_1k_2}{k_{-1}}[E][R] d[P]/dt=k−1k1k2[E][R]
d [ P ] / d t = k 2 [ E 0 ] [ R 0 ] R 0 + k − 1 k 1 d[P]/dt=\frac{k_2[E_0][R_0]}{R_0+\frac{k_{-1}}{k_1}} d[P]/dt=R0+k1k−1k2[E0][R0]
近似 2:稳态近似
E
+
R
↔
k
−
1
k
1
E
R
↔
k
−
2
k
2
E
+
P
\mathrm{E + R} \xleftrightarrow[k_{-1}]{k_1} ER \xleftrightarrow[k_{-2}]{k_2} \mathrm{E + P}
E+Rk1
k−1ERk2
k−2E+P
[ P ] = 0 [P]=0 [P]=0 产物被立即移走。 E R \mathrm{ER} ER 为稳态。
d [ P ] / d t = k 2 [ E 0 ] [ R 0 ] R 0 + k − 1 + k 2 k 1 d[P]/dt=\frac{k_2[E_0][R_0]}{R_0+\frac{k_{-1}+k_2}{k_1}} d[P]/dt=R0+k1k−1+k2k2[E0][R0]
MM 机理:
d
[
P
]
/
d
t
=
k
2
[
E
0
]
[
R
0
]
R
0
+
K
d[P]/dt=\frac{k_2[E_0][R_0]}{R_0+K}
d[P]/dt=R0+Kk2[E0][R0]
在单分子水平,定义:
k
1
′
=
k
1
[
R
]
,
k
−
2
′
=
k
−
2
[
P
]
k_1' = k_1[R],\ k_{-2}' = k_{-2}[P]
k1′=k1[R], k−2′=k−2[P]
E
↔
k
−
1
k
1
′
E
R
↔
k
−
2
k
2
′
E
↔
k
−
1
k
1
′
E
R
↔
k
−
2
k
2
′
E
↔
…
\mathrm{E} \xleftrightarrow[k_{-1}]{k_1'} \mathrm{ER} \xleftrightarrow[k_{-2}]{k_2'} \mathrm{E} \xleftrightarrow[k_{-1}]{k_1'} \mathrm{ER} \xleftrightarrow[k_{-2}]{k_2'} \mathrm{E} \xleftrightarrow \dots
Ek1′
k−1ERk2′
k−2Ek1′
k−1ERk2′
k−2E…
detailed balance 被破坏的情形:
E
1
↔
E
R
↔
E
2
↔
E
R
↔
E
3
↔
E
R
…
\mathrm{E_1} \leftrightarrow \mathrm{ER} \leftrightarrow \mathrm{E_2} \leftrightarrow \mathrm{ER} \leftrightarrow \mathrm{E_3} \leftrightarrow \mathrm{ER} \dots
E1↔ER↔E2↔ER↔E3↔ER…
k
−
2
′
≈
0
k_{-2}'\approx 0
k−2′≈0 有:
E
↔
k
−
1
k
1
′
E
R
→
k
2
E
↔
k
−
1
k
1
′
E
R
→
k
2
E
↔
…
\mathrm{E} \xleftrightarrow[k_{-1}]{k_1'} \mathrm{ER} \overset{k_2}{\rightarrow} \mathrm{E} \xleftrightarrow[k_{-1}]{k_1'} \mathrm{ER} \overset{k_2}{\rightarrow} \mathrm{E} \leftrightarrow \dots
Ek1′
k−1ER→k2Ek1′
k−1ER→k2E↔…
v = k 2 w E R = k 2 1 + k − 1 + k 2 k 1 ′ = k 2 [ R ] [ R ] + K v = k_2w_{ER} = \frac{k_2}{1+\frac{k_{-1}+k_2}{k_1'}} = \frac{k_2[R]}{[R] + K} v=k2wER=1+k1′k−1+k2k2=[R]+Kk2[R]
对于:
E
→
k
1
′
I
1
→
k
2
I
2
→
…
→
k
N
I
n
→
k
N
+
1
E
→
k
1
′
I
1
…
\mathrm{E} \overset{k_1'}{\rightarrow} \mathrm{I_1} \overset{k_2}{\rightarrow} \mathrm{I_2} \rightarrow \dots \overset{k_N}{\rightarrow} \mathrm{I_n} \overset{k_{N+1}}{\rightarrow} \mathrm{E} \overset{k_1'}{\rightarrow} \mathrm{I_1}\dots
E→k1′I1→k2I2→…→kNIn→kN+1E→k1′I1…
总的转化时间: t = t 1 + t 2 + ⋯ + t N + 1 t = t_1 + t_2 + \dots + t_{N+1} t=t1+t2+⋯+tN+1, ⟨ t ⟩ = ⟨ t 1 ⟩ + ⟨ t 2 ⟩ + ⋯ + ⟨ t N + 1 ⟩ \langle t\rangle = \langle t_1\rangle + \langle t_2\rangle + \dots + \langle t_{N+1}\rangle ⟨t⟩=⟨t1⟩+⟨t2⟩+⋯+⟨tN+1⟩
⟨ t 1 ⟩ = 1 / k 1 ′ , ⟨ t i ⟩ 1 / k 1 ⇒ ⟨ t ⟩ = 1 k 1 ′ + ∑ i = 2 N + 1 1 k i \langle t_1\rangle = 1/k_1',\ \langle t_i\rangle 1/k_1 \Rightarrow \langle t\rangle = \frac{1}{k_1'} + \sum\limits_{i=2}^{N+1}\frac{1}{k_i} ⟨t1⟩=1/k1′, ⟨ti⟩1/k1⇒⟨t⟩=k1′1+i=2∑N+1ki1
v = ⟨ t ⟩ − 1 = [ R ] τ 2 − 1 [ R ] + K v = \langle t\rangle^{-1} = \frac{[R]\tau_2^{-1}}{[R] + K} v=⟨t⟩−1=[R]+K[R]τ2−1
其中 τ 2 = ∑ i = 2 N + 1 1 k i \tau_2 = \sum\limits_{i=2}^{N+1}\frac{1}{k_i} τ2=i=2∑N+1ki1; K = τ 2 − 1 / k 1 K = \tau_2^{-1}/k_1 K=τ2−1/k1
对于:
E
→
k
1
′
I
1
→
k
2
I
2
→
…
→
k
N
I
n
→
k
N
+
1
E
→
k
1
′
I
1
…
\mathrm{E} \overset{k_1'}{\rightarrow} \mathrm{I_1} \overset{k_2}{\rightarrow} \mathrm{I_2} \rightarrow \dots \overset{k_N}{\rightarrow} \mathrm{I_n} \overset{k_{N+1}}{\rightarrow} \mathrm{E} \overset{k_1'}{\rightarrow} \mathrm{I_1}\dots
E→k1′I1→k2I2→…→kNIn→kN+1E→k1′I1…
有:
w
(
t
)
∝
t
N
w(t)\propto t^N
w(t)∝tN
N = 0 N = 0 N=0,一步反应, w ( t ) = k R → P e − k R → P t , w ( t ) ∝ t 0 a t t → 0 w(t) = k_{R\to P}e^{-k_{R\to P}t},\ w(t)\propto t^0\ at\ t\to 0 w(t)=kR→Pe−kR→Pt, w(t)∝t0 at t→0
N = 0 N = 0 N=0,两步反应, w ( t ) = e − k 1 ′ t − e − k 2 t ( k 1 ′ ) − 1 − k 2 − 1 , w ( t ) ∝ t 0 a t t → 0 , w ( t ) ≈ k 1 ′ k 2 t w(t) = \frac{e^{-k_1't} - e^{-k_2t}}{(k_1')^{-1} - k_2^{-1}},\ w(t)\propto t^0\ at\ t\to 0,\ w(t)\approx k_1'k_2t w(t)=(k1′)−1−k2−1e−k1′t−e−k2t, w(t)∝t0 at t→0, w(t)≈k1′k2t
N + 1 N+1 N+1 是连接 E \mathrm{E} E 和 E ′ \mathrm{E'} E′ 的最小基元步骤数。
E adjacent states k E → E\overset{k_{E\to}}{\text{adjacent states}} Eadjacent stateskE→
参考资料:
[1] Makarov, D. E. (2015). Single molecule science: Physical principles and models. CRC Press, Taylor & Francis Group.