代码实现:
import numpy as np
import pandas as pd
import sklearn.svm as svm
import sklearn.model_selection as ms
import sklearn.metrics as sm
import matplotlib.pyplot as plt
# 创建SVM的超参数集:
params = [{'kernel':['linear'], 'C':[1, 10, 100, 1000]},
{'kernel':['poly'], 'C':[1], 'degree':[2, 3]},
{'kernel':['rbf'], 'C':[1, 10, 100, 900, 1000], 'gamma':[1, 0.1, 0.01, 0.001]}]
data = pd.read_csv('C:/Users/81936/Desktop/balance.txt', delimiter=",")
data = np.array(data)
data1 = data[:, :-1]
data2 = data[:, -1]
data3 = []
for i in data2:
if i==' R':
data3.append(1)
if i==' B':
data3.append(2)
if i==' L':