Elasticsearch学习笔记(下)

主要内容

一、路由计算与控制
二、分片原理
三、文档分析
四、文档文档处理
五、SpringData框架集成
六、ElasticSearch优化

一、路由计算与控制

1、路由计算 

当索引一个文档的时候,文档会被存储到一个主分片中。 Elasticsearch 如何知道一个文档应该存放到哪个分片中呢?当我们创建文档时,它如何决定这个文档应当被存储在分片1 还是分片 2 中呢?首先这肯定不会是随机的,否则将来要获取文档的时候我们就不知道从何处寻找了。实际上,这个过程是根据下面这个公式决定的:

routing 是一个可变值,默认是文档的 _id ,也可以设置成一个自定义的值。 routing 通过
hash 函数生成一个数字,然后这个数字再除以 number_of_primary_shards (主分片的数量)后得到余数 。这个分布在 0 到 number_of_primary_shards-1 之间的余数,就是我们所寻求的文档所在分片的位置。 

这就解释了为什么我们要在创建索引的时候就确定好主分片的数量 并且永远不会改变这个数量:因为如果数量变化了,那么所有之前路由的值都会无效,文档也再也找不到了。

所有的文档 API( get 、 index 、 delete 、 bulk 、 update 以及 mget )都接受一个叫做 routing 的路由参数 ,通过这个参数我们可以自定义文档到分片的映射。一个自定义的路由参数可以用来确保所有相关的文档——例如所有属于同一个用户的文档——都被存储到同一个分片中。

2、分片控制

我们假设有一个集群由三个节点组成。 它包含一个叫 emps 的索引,有两个主分片,每个主分片有两个副本分片。相同分片的副本不会放在同一节点。

 

通过 elasticsearch-head 插件查看集群情况,所以我们的集群是一个有三个节点和一个索引的集群。 

我们可以发送请求到集群中的任一节点。 每个节点都有能力处理任意请求。 每个节点都知道集群中任一文档位置,所以可以直接将请求转发到需要的节点上。 在下面的例子中,将所有的请求发送到 Node 1,我们将其称为  协调节点(coordinating node) 。 

当发送请求的时候, 为了扩展负载,更好的做法是轮询集群中所有的节点。

1)写流程

新建、索引和删除 请求都是 写 操作, 必须在主分片上面完成之后才能被复制到相关的副本分片。

新建,索引和删除文档所需要的步骤顺序:

  1. 客户端向 Node 1 发送新建、索引或者删除请求。
  2. 节点使用文档的 _id 确定文档属于分片 0 。请求会被转发到 Node 3,因为分片 0 的主分片目前被分配在 Node 3 上。
  3. Node 3 在主分片上面执行请求。如果成功了,它将请求并行转发到 Node 1 和 Node 2的副本分片上。一旦所有的副本分片都报告成功, Node 3 将向协调节点报告成功,协调节点向客户端报告成功。

在客户端收到成功响应时,文档变更已经在主分片和所有副本分片执行完成,变更是安全的。有一些可选的请求参数允许您影响这个过程,可能以数据安全为代价提升性能。这些选项很少使用,因为 Elasticsearch 已经很快,但是为了完整起见,请参考下面:

 consistency,即一致性。在默认设置下,即使仅仅是在试图执行一个_写_操作之前,主分片都会要求 必须要有 规定数量(quorum)(或者换种说法,也即必须要有大多数)的分片副本处于活跃可用状态,才会去执行_写_操作(其中分片副本可以是主分片或者副本分片)。这是为了避免在发生网络分区故障(networkpartition)的时候进行_写_操作,进而导致数据不一致。_规定数量_即:
int( (primary + number_of_replicas) / 2 ) + 1
consistency 参数的值可以设为 one (只要主分片状态 ok 就允许执行_写_操作),all(必须要主分片和所有副本分片的状态没问题才允许执行_写_操作), 或quorum 。默认值为 quorum , 即大多数的分片副本状态没问题就允许执行_写_操作。


注意,规定数量 的计算公式中 number_of_replicas 指的是在索引设置中的设定副本分片数,primary指的是主分片数量,而不是指当前处理活动状态的副本分片数。如果你的索引设置中指定了当前索引拥有三个副本分片,那规定数量的计算结果即:
int( (primary + 3 replicas) / 2 ) + 1 = 3
如果此时你只启动两个节点,那么处于活跃状态的分片副本数量就达不到规定数
量,也因此您将无法索引和删除任何文档。

timeout   如果没有足够的副本分片会发生什么? Elasticsearch 会等待,希望更多的分片出
现。默认情况下,它最多等待 1 分钟。 如果你需要,你可以使用 timeout 参数使它更早终止: 100 100 毫秒,30s 是 30 秒。

新索引默认有 1 个副本分片,这意味着为满足规定数量应该需要两个活动的分片副本。 但是,这些默认的设置会阻止我们在单一节点上做任何事情。为了避免这个问题,要求number_of_replicas 大于 1 的时候,规定数量才会执行。

根据公式,主分片为1,副本分片数为1,(1 + 1)/ 2 + 1 = 2

2)读流程

我们可以从主分片或者从其它任意副本分片检索文档

从主分片或者副本分片检索文档的步骤顺序:

  1. 客户端向 Node 1 发送获取请求。
  2. 节点使用文档的 _id 来确定文档属于分片 0 。分片 0 的副本分片存在于所有的三个节点上。 在这种情况下,它将请求转发到 Node 2 。
  3. Node 2 将文档返回给 Node 1 ,然后将文档返回给客户端。

在处理读取请求时,协调结点在每次请求的时候都会通过轮询所有的副本分片来达到负载均
衡。
在文档被检索时,已经被索引的文档可能已经存在于主分片上但是还没有复制到副本分
片。 在这种情况下,副本分片可能会报告文档不存在,但是主分片可能成功返回文档。 一
旦索引请求成功返回给用户,文档在主分片和副本分片都是可用的。

3)更新流程

部分更新一个文档结合了先前说明的读取和写入流程:

部分更新一个文档的步骤如下:

  1. 客户端向 Node 1 发送更新请求。
  2. 它将请求转发到主分片所在的 Node 3 。
  3. Node 3 从主分片检索文档,修改 _source 字段中的 JSON ,并且尝试重新索引主分片的文档。 如果文档已经被另一个进程修改,它会重试步骤 3 ,超过 retry_on_conflict 次后放弃。
  4. 如果 Node 3 成功地更新文档,它将新版本的文档并行转发到 Node 1 和 Node 2 上的副本分片,重新建立索引。一旦所有副本分片都返回成功, Node 3 向协调节点也返回成功,协调节点向客户端返回成功。 

当主分片把更改转发到副本分片时, 它不会转发更新请求。 相反,它转发完整文档的新版本。请记住,这些更改将会异步转发到副本分片,并且不能保证它们以发送它们相同的顺序到达。 如果 Elasticsearch 仅转发更改请求,则可能以错误的顺序应用更改,导致得到损坏的文档。

低版本的文档修改高版本的文档会失败,从而解决异步的顺序问题。

4)多文档操作流程

mget 和 bulk API 的模式类似于单文档模式。区别在于协调节点知道每个文档存在于哪个分片中。它将整个多文档请求分解成 每个分片 的多文档请求,并且将这些请求并行转发到每个参与节点。

协调节点一旦收到来自每个节点的应答,就将每个节点的响应收集整理成单个响应,返回给客户端

用单个 mget  请求取回多个文档所需的步骤顺序:

  1. 客户端向 Node 1 发送 mget 请求。
  2. Node 为每个分片构建多文档获取请求,然后并行转发这些请求到托管在每个所需的主分片或者副本分片的节点上。一旦收到所有答复, Node 1 构建响应并将其返回给客户端。

bulk API, 允许在单个批量请求中执行多个创建、索引、删除和更新请求。

bulk API 按如下步骤顺序执行:

  1. 客户端向 Node 1 发送 bulk 请求。
  2. Node 1 为每个节点创建一个批量请求,并将这些请求并行转发到每个包含主分片的节点主机。
  3. 主分片一个接一个按顺序执行每个操作。当每个操作成功时,主分片并行转发新文档(或删除)到副本分片,然后执行下一个操作。 一旦所有的副本分片报告所有操作成功,该节点将向协调节点报告成功,协调节点将这些响应收集整理并返回给客户端。

二、分片原理

分片是 Elasticsearch 最小的工作单元。但是究竟什么是一个分片,它是如何工作的?

传统的数据库每个字段存储单个值,但这对全文检索并不够。文本字段中的每个单词需要被搜索,对数据库意味着需要单个字段有索引多值的能力。最好的支持是一个字段多个值需求的数据结构是倒排索引

1、倒排索引

Elasticsearch 使用一种称为倒排索引的结构,它适用于快速的全文搜索。

见其名,知其意,有倒排索引,肯定会对应有正向索引所谓的正向索引,就是搜索引擎会将待搜索的文件都对应一个文件 ID,搜索时将这个ID 和搜索关键字进行对应,形成 K-V 对,然后对关键字进行统计计数。

但是互联网上收录在搜索引擎中的文档的数目是个天文数字,这样的索引结构根本无法满足实时返回排名结果的要求。所以,搜索引擎会将正向索引重新构建为倒排索引,即把文件ID对应到关键词的映射转换为关键词到文件ID的映射,每个关键词都对应着一系列的文件,这些文件中都出现这个关键词。

一个倒排索引由文档中所有不重复词的列表构成,对于其中每个词,有一个包含它的文档列表。例如,假设我们有两个文档,每个文档的 content 域包含如下内容:

1)The quick brown fox jumped over the lazy dog

2)Quick brown foxes leap over lazy dogs in summer

为了创建倒排索引,我们首先将每个文档的 content 域拆分成单独的 词(我们称它为 词条或 tokens ),创建一个包含所有不重复词条的排序列表,然后列出每个词条出现在哪个文档。结果如下所示:

现在,如果我们想搜索 quick brown ,我们只需要查找包含每个词条的文档: 

 两个文档都匹配,但是第一个文档比第二个匹配度更高。如果我们使用仅计算匹配词条数量的简单相似性算法,那么我们可以说,对于我们查询的相关性来讲,第一个文档比第二个文档更佳。

但是,我们目前的倒排索引有一些问题:
1)Quick 和 quick 以独立的词条出现,然而用户可能认为它们是相同的词。
2) fox 和 foxes 非常相似, 就像 dog 和 dogs ;他们有相同的词根。
3)  jumped 和 leap, 尽管没有相同的词根,但他们的意思很相近。他们是同义词。

使用前面的索引搜索 +Quick +fox 不会得到任何匹配文档。(记住,+ 前缀表明这个词必须存在。)只有同时出现 Quick和 fox 的文档才满足这个查询条件,但是第一个文档包含quick fox ,第二个文档包含 Quick foxes 。

如果我们将词条规范为标准模式,那么我们可以找到与用户搜索的词条不完全一致,但具有足够相关性的文档。例如:
1) Quick 可以小写化为 quick 。
2)  foxes 可以 词干提取 --变为词根的格式-- 为 fox 。类似的, dogs 可以为提取为 dog 。
3)  jumped 和 leap 是同义词,可以索引为相同的单词 jump 。

 现在索引看上去像这样:

这还远远不够。我们搜索 +Quick +fox 仍然 会失败,因为在我们的索引中,已经没有 Quick了。但是,如果我们对搜索的字符串使用与 content 域相同的标准化规则,会变成查询+quick +fox,这样两个文档都会匹配!分词和标准化的过程称为 分析

这非常重要。你只能搜索在索引中出现的词条,所以索引文本和查询字符串必须标准化为相同的格式。

2、文档搜索

早期的全文检索会为整个文档集合建立一个很大的倒排索引并将其写入到磁盘。 一旦新的索引就绪,旧的就会被其替换,这样最近的变化便可以被检索到。

倒排索引被写入磁盘后是不可改变的:它永远不会修改。

不变性有重要的价值:

1) 不需要锁。如果你从来不更新索引,你就不需要担心多进程同时修改数据的问题。

2)  一旦索引被读入内核的文件系统缓存,便会留在哪里,由于其不变性。只要文件系统缓存中还有足够的空间,那么大部分读请求会直接请求内存,而不会命中磁盘。这提供了很大的性能提升

3) 其它缓存(像 filter 缓存),在索引的生命周期内始终有效。它们不需要在每次数据改变时被重建,因为数据不会变化。

4) 写入单个大的倒排索引允许数据被压缩,减少磁盘 I/O 和 需要被缓存到内存的索引的使用量。

当然,一个不变的索引也有不好的地方。主要事实是它是不可变的! 你不能修改它。如果你需要让一个新的文档 可被搜索,你需要重建整个索引。这要么对一个索引所能包含的数据量造成了很大的限制,要么对索引可被更新的频率造成了很大的限制。

3、动态更新索引

如何在保留不变性的前提下实现倒排索引的更新?

答案是: 用更多的索引。通过增加新的补充索引来反映新近的修改,而不是直接重写整个倒排索引。每一个倒排索引都会被轮流查询到,从最早的开始查询完后再对结果进行合并。

Elasticsearch 基于 Lucene, 这个 java 库引入了按段搜索的概念。 每一段本身都是一个倒排索引, 但索引在 Lucene 中除表示所有段的集合外, 还增加了提交点的概念---------- 一个列出了所有已知段的文件 。

按段搜索会以如下流程执行:

1)新文档被收集到内存索引缓存  

 2) 不时地, 缓存被提交

(1) 一个新的段(一个追加的倒排索引)被写入磁盘。

(2) 一个新的包含新段名字的 提交点 被写入磁盘

(3) 磁盘进行 同步 — 所有在文件系统缓存中等待的写入都刷新到磁盘,以确保它们被写入物理文件

3) 新的段被开启,让它包含的文档可见以被搜索 

4)  内存缓存被清空,等待接收新的文档

 当一个查询被触发,所有已知的段按顺序被查询。词项统计会对所有段的结果进行聚合,以
保证每个词和每个文档的关联都被准确计算。 这种方式可以用相对较低的成本将新文档添加到索引。


段是不可改变的,所以既不能从把文档从旧的段中移除,也不能修改旧的段来进行反映文档
的更新。 取而代之的是,每个提交点会包含一个 .del 文件,文件中会列出这些被删除文档的段信息。


当一个文档被 “删除” 时,它实际上只是在 .del 文件中被标记删除。一个被标记删除的文档仍然可以被查询匹配到, 但它会在最终结果被返回前从结果集中移除。


文档更新也是类似的操作方式:当一个文档被更新时,旧版本文档被标记删除,文档的新版
本被索引到一个新的段中。 可能两个版本的文档都会被一个查询匹配到,但被删除的那个
旧版本文档在结果集返回前就已经被移除。

4、近实时搜索 

fsync说明:同步内存中所有已修改的文件数据到储存设备。

随着按段搜索的发展,一个新的文档从索引到可被搜索的延迟显著降低了。新文档在几分钟之内即可被检索,但这样还是不够快。磁盘在这里成为了瓶颈。提交一个新的段到磁盘需要一个 fsync 来确保段被物理性地写入磁盘,这样在断电的时候就不会丢失数据。 但是 fsync 操作代价很大; 如果每次索引一个文档都去执行一次的话会造成很大的性能问题。

我们需要的是一个更轻量的方式来使一个文档可被搜索,这意味着 fsync 要从整个过程中被移除。在 Elasticsearch 和磁盘之间是文件系统缓存。 像之前描述的一样, 在内存索引缓冲区中的文档会被写入到一个新的段中。 但是这里新段会被先写入到文件系统缓存—这一步代价会比较低,稍后再被刷新到磁盘—这一步代价比较高。不过只要文件已经在缓存中,就可以像其它文件一样被打开和读取了。

 

Lucene 允许新段被写入和打开—使其包含的文档在未进行一次完整提交时便对搜索可见。这种方式比进行一次提交代价要小得多,并且在不影响性能的前提下可以被频繁地执行。 

在 Elasticsearch 中,写入和打开一个新段的轻量的过程叫做 refresh 。 默认情况下每个分片会每秒自动刷新一次。这就是为什么我们说 Elasticsearch 是 近实时搜索: 文档的变化并不是立即对搜索可见,但会在一秒之内变为可见。

这些行为可能会对新用户造成困惑: 他们索引了一个文档然后尝试搜索它,但却没有搜到。这个问题的解决办法是用 refresh API 执行一次手动刷新: /users/_refresh 

尽管刷新是比提交轻量很多的操作,它还是会有性能开销。当写测试的时候, 手动刷新很有用,但是不要在生产环境下每次索引一个文档都去手动刷新。 相反,你的应用需要意识到Elasticsearch 的近实时的性质,并接受它的不足 。

并不是所有的情况都需要每秒刷新。可能你正在使用 Elasticsearch 索引大量的日志文件,你可能想优化索引速度而不是近实时搜索, 可以通过设置 refresh_interval , 降低每个索引的刷新频率

{
    "settings": {
        "refresh_interval": "30s"
    }
}

refresh_interval 可以在既存索引上进行动态更新。 在生产环境中,当你正在建立一个大的新索引时,可以先关闭自动刷新,待开始使用该索引时,再把它们调回来 

# 关闭自动刷新
PUT /users/_settings
{ "refresh_interval": -1 }
# 每一秒刷新
PUT /users/_settings
{ "refresh_interval": "1s" }

5、持久化变更

如果没有用 fsync 把数据从文件系统缓存刷(flush)到硬盘,我们不能保证数据在断电甚至是程序正常退出之后依然存在。为了保证 Elasticsearch 的可靠性,需要确保数据变化被持久化到磁盘。在 动态更新索引,我们说一次完整的提交会将段刷到磁盘,并写入一个包含所有段列表的提交点。Elasticsearch 在启动或重新打开一个索引的过程中使用这个提交点来判断哪些段隶属于当前分片。

即使通过每秒刷新(refresh)实现了近实时搜索,我们仍然需要经常进行完整提交来确保能从失败中恢复。但在两次提交之间发生变化的文档怎么办?我们也不希望丢失掉这些数据。Elasticsearch 增加了一个 translog ,或者叫事务日志,在每一次对 Elasticsearch 进行操作时均进行了日志记录

整个流程如下:

1)一个文档被索引之后,就会被添加到内存,并且追加到了 translog

2) 刷新(refresh)使分片每秒被刷新(refresh)一次:

1)这些在内存的文档被写入到一个新的段中,且没有进行 fsync 操作
2)这个段被打开,使其可被搜索
3)内存区被清空,提交到了文件系统缓冲区

 3)这个进程继续工作,更多的文档被添加到内存和追加到事务日志

4)每隔一段时间—例如 translog 变得越来越大—索引被刷新(flush);一个新的 translog被创建,并且一个全量提交被执行。

1)所有在内存区的文档都被写入一个新的段。
2)内存被清空。
3) 一个提交点被写入硬盘。
4) 文件系统缓存通过 fsync 被刷新(flush)。
5) 老的 translog 被删除。

 translog 提供所有还没有被刷到磁盘的操作的一个持久化纪录。当 Elasticsearch 启动的时候, 它会从磁盘中使用最后一个提交点去恢复已知的段,并且会重放 translog 中所有在最后一次提交后发生的变更操作。

translog 也被用来提供实时 CRUD 。当你试着通过 ID 查询、更新、删除一个文档,它会在尝试从相应的段中检索之前, 首先检查 translog 任何最近的变更。这意味着它总是能够实时地获取到文档的最新版本。

执行一个提交并且截断 translog 的行为在 Elasticsearch 被称作一次 flush,分片每 30 分钟被自动刷新(flush),或者在 translog 太大的时候也会刷新。

你很少需要自己手动执行 flush 操作;通常情况下,自动刷新就足够了。这就是说,在重启节点或关闭索引之前执行 flush 有益于你的索引。当 Elasticsearch 尝试恢复或重新打开一个索引, 它需要重放 translog 中所有的操作,所以如果日志越短,恢复越快。

translog 的目的是保证操作不会丢失,在文件被 fsync 到磁盘前,被写入的文件在重启之后就会丢失。默认 translog 是每 5 秒被 fsync 刷新到硬盘, 或者在每次写请求完成之后执行(e.g. index, delete, update, bulk)。这个过程在主分片和复制分片都会发生。最终, 基本上,这意味着在整个请求被 fsync 到主分片和复制分片的 translog 之前,你的客户端不会得到一个 200 OK 响应。

但是对于一些大容量的偶尔丢失几秒数据问题也并不严重的集群,使用异步的 fsync还是比较有益的。比如,写入的数据被缓存到内存中,再每 5 秒执行一次 fsync 。如果你决定使用异步 translog 的话,你需要 保证 在发生 crash 时,丢失掉 sync_interval 时间段的数据也无所谓。如果你不确定这个行为的后果,最好是使用默认的参数( "index.translog.durability": "request" )来避免数据丢失。

6、段合并

由于自动刷新流程每秒会创建一个新的段 ,这样会导致短时间内的段数量暴增。而段数目太多会带来较大的麻烦。 每一个段都会消耗文件句柄、内存和 cpu 运行周期。更重要的是,每个搜索请求都必须轮流检查每个段;所以段越多,搜索也就越慢。Elasticsearch 通过在后台进行段合并来解决这个问题。小的段被合并到大的段,然后这些大的段再被合并到更大的段。

段合并的时候会将那些旧的已删除文档从文件系统中清除。被删除的文档(或被更新文档的旧版本)不会被拷贝到新的大段中。

启动段合并不需要你做任何事。进行索引和搜索时会自动进行。
1)当索引的时候,刷新(refresh)操作会创建新的段并将段打开以供搜索使用。
2)  合并进程选择一小部分大小相似的段,并且在后台将它们合并到更大的段中,这并不会
中断索引和搜索。

3)  一旦合并结束,老的段被删除
①  新的段被刷新(flush)到了磁盘, 写入一个包含新段且排除旧的和较小的段的新提交点。
②  新的段被打开用来搜索。
③  老的段被删除。 

 合并大的段需要消耗大量的 I/O 和 CPU 资源,如果任其发展会影响搜索性能Elasticsearch 在默认情况下会对合并流程进行资源限制,所以搜索仍然 有足够的资源很好地执行。

7、总结

1. es先将数据写入内存之中,再写到Translog中,与数据库不同,数据库先写入日志再写入内存。原因是内存写入有很复杂的逻辑,比如分词,过滤,转换,有可能出现问题,为了避免Translog有大量的无效记录,编写log转换失败,减少恢复的复杂度和速度,所以先写入内存,再写入日志。 

2.由于写入内存之中,es中的数据并不能被搜索,必须要将数据刷写到磁盘中才能操作,由于性能很低,所有添加了文件系统缓冲区, 只需要保证再文件系统缓冲区能提供服务即可。

3. 内存中的数据对象每秒会将数据刷新到内存缓冲区,文件系统缓冲区每半个小时刷新数据到磁盘,Translog每 5s 刷新到磁盘。

4. 这样我们不仅可以再文件系统缓冲区实现对数据的处理,再内存中对数据进行查询,提升了性能。

5. 随着磁盘文件的不断增加,我们需要考虑文件的合并问题,减少文件的数量,效率也可以得到提高,由于倒排索引是不可见的,每一次的更新,删除都体现在新的索引段中,我们在合并的时候,就会将del文件真正的删除。

三、文档分析

文档分析包含下面的过程:
1)将一块文本分成适合于倒排索引的独立的 词条
2)将这些词条统一化为标准格式以提高它们的“可搜索性”,或者 recall

分析器执行上面的工作,实际上是将三个功能封装到了一个包里:
1)字符过滤器
首先,字符串按顺序通过每个 字符过滤器 。他们的任务是在分词前整理字符串。一个字符过滤器可以用来去掉 HTML,或者将 & 转化成 and。
2)分词器
其次,字符串被 分词器 分为单个的词条。一个简单的分词器遇到空格和标点的时候,可能会将文本拆分成词条。
3)Token 过滤器

最后,词条按顺序通过每个 token 过滤器 。这个过程可能会改变词条(例如,小写化Quick ),删除词条(例如, 像 a, and, the 等无用词),或者增加词条(例如,像 jump和 leap 这种同义词)。

1、内置分析器

Elasticsearch 还附带了可以直接使用的预包装的分析器。接下来我们会列出最重要的分析器。为了证明它们的差异,我们看看每个分析器会从下面的字符串得到哪些词条:
"Set the shape to semi-transparent by calling set_trans(5)"

1)标准分析器
标准分析器是 Elasticsearch 默认使用的分析器。它是分析各种语言文本最常用的选择。它根据 Unicode 联盟 定义的 单词边界 划分文本。删除绝大部分标点。最后,将词条小写。
它会产生:
set, the, shape, to, semi, transparent, by, calling, set_trans, 5


2)简单分析器
简单分析器在任何不是字母的地方分隔文本,将词条小写。它会产生:
set, the, shape, to, semi, transparent, by, calling, set, trans


3)空格分析器
空格分析器在空格的地方划分文本。它会产生:
Set, the, shape, to, semi-transparent, by, calling, set_trans(5)


4)语言分析器
特定语言分析器可用于 很多语言。它们可以考虑指定语言的特点。例如, 英语 分析器附带了一组英语无用词(常用单词,例如 and 或者 the ,它们对相关性没有多少影响),它们会被删除。 由于理解英语语法的规则,这个分词器可以提取英语单词的 词干 。英语 分词器会产生下面的词条:
set, shape, semi, transpar, call, set_tran, 5
注意看 transparent、 calling 和 set_trans 已经变为词根格式

2、分析器使用场景

当我们 索引 一个文档,它的全文域被分析成词条以用来创建倒排索引。 但是,当我们在全文域 搜索 的时候,我们需要将查询字符串通过 相同的分析过程 ,以保证我们搜索的词条格式与索引中的词条格式一致。

全文查询,理解每个域是如何定义的,因此它们可以做正确的事:
1)当你查询一个 全文 域时, 会对查询字符串应用相同的分析器,以产生正确的搜索词条列表。
2)当你查询一个 精确值 域时,不会分析查询字符串,而是搜索你指定的精确值。

3、测试分析器

有些时候很难理解分词的过程和实际被存储到索引中的词条,特别是你刚接触Elasticsearch。为了理解发生了什么,你可以使用 analyze API 来看文本是如何被分析的。在消息体里,指定分析器和要分析的文本。

在消息体里,指定分析器和要分析的文本

GET http://localhost:9200/_analyze
{
    "analyzer": "standard",
    "text": "Text to analyze"
}

结果中每个元素代表一个单独的词条:

{
    "tokens": [
        {
            "token": "text",
            "start_offset": 0,
            "end_offset": 4,
            "type": "<ALPHANUM>",
            "position": 1
        },
        {
            "token": "to",
            "start_offset": 5,
            "end_offset": 7,
            "type": "<ALPHANUM>",
            "position": 2
        },
        {
            "token": "analyze",
            "start_offset": 8,
            "end_offset": 15,
            "type": "<ALPHANUM>",
            "position": 3
        }
    ]
}

 token 是实际存储到索引中的词条。 position 指明词条在原始文本中出现的位置。start_offset 和 end_offset 指明字符在原始字符串中的位置。

4、指定分析器

当Elasticsearch在你的文档中检测到一个新的字符串域,它会自动设置其为一个全文 字符串 域,使用 标准 分析器对它进行分析。你不希望总是这样。可能你想使用一个不同的分析器,适用于你的数据使用的语言。有时候你想要一个字符串域就是一个字符串域—不使用分析,直接索引你传入的精确值,例如用户 ID 或者一个内部的状态域或标签。要做到这一点,我们必须手动指定这些域的映射。

5、IK 分词器

首先我们通过 Postman 发送 GET 请求查询分词效果

ES 的默认分词器无法识别中文中测试、单词这样的词汇,而是简单的将每个字拆完分为一个词 

{
    "tokens": [
        {
            "token": "测",
            "start_offset": 0,
            "end_offset": 1,
            "type": "<IDEOGRAPHIC>",
            "position": 0
        },
        {
            "token": "试",
            "start_offset": 1,
            "end_offset": 2,
            "type": "<IDEOGRAPHIC>",
            "position": 1
        },
        {
            "token": "单",
            "start_offset": 2,
            "end_offset": 3,
            "type": "<IDEOGRAPHIC>",
            "position": 2
        },
        {
            "token": "词",
            "start_offset": 3,
            "end_offset": 4,
            "type": "<IDEOGRAPHIC>",
            "position": 3
        }
    ]
}

这样的结果显然不符合我们的使用要求,所以我们需要下载 ES 对应版本的中文分词器。

我们这里采用 IK 中文分词器,下载地址为:
https://github.com/medcl/elasticsearch-analysis-ik/releases/tag/v7.8.0
将解压后的后的文件夹放入 ES 根目录下的 plugins 目录下,重启 ES 即可使用。

 ik_max_word:会将文本做最细粒度的拆分

ik_smart:会将文本做最粗粒度的拆分 

 

 使用中文分词后的结果为:

{
    "tokens": [
        {
            "token": "测试",
            "start_offset": 0,
            "end_offset": 2,
            "type": "CN_WORD",
            "position": 0
        },
        {
            "token": "单词",
            "start_offset": 2,
            "end_offset": 4,
            "type": "CN_WORD",
            "position": 1
        }
    ]
}

ES 中也可以进行扩展词汇

首先进入 ES 根目录中的 plugins 文件夹下的 ik 文件夹,进入 config 目录,创建 custom.dic
文件,写入弗雷尔卓德。同时打开 IKAnalyzer.cfg.xml 文件,将新建的 custom.dic 配置其中,
重启 ES 服务器。

从结果可看出 弗雷尔卓德 并没有被拆分。

四、文档处理

1、文档冲突

假设有两个 web程序并行运行,每一个都同时处理所有商品的销售,web_1 对 stock_count 所做的更改已经丢失,因为 web_2 不知道它的 stock_count 的拷贝已经过期。 结果我们会认为有超过商品的实际数量的库存,因为卖给顾客的库存商品,并不存在,我们将让他们非常失望。

变更越频繁,读数据和更新数据的间隙越长,也就越可能丢失变更。

在数据库领域中,有两种方法通常被用来确保并发更新时变更不会丢失:

1)悲观并发控制
这种方法被关系型数据库广泛使用,它假定有变更冲突可能发生,因此阻塞访问资源以防止冲突。 一个典型的例子是读取一行数据之前先将其锁住,确保只有放置锁的线程能够对这行数据进行修改。

2)乐观并发控制
Elasticsearch 中使用的这种方法假定冲突是不可能发生的,并且不会阻塞正在尝试的操作。 然而,如果源数据在读写当中被修改,更新将会失败。应用程序接下来将决定该如何解决冲突。 例如,可以重试更新、使用新的数据、或者将相关情况报告给用户。

2、乐观并发控制 

Elasticsearch 是分布式的。当文档创建、更新或删除时, 新版本的文档必须复制到集群中的其他节点。Elasticsearch 也是异步和并发的,这意味着这些复制请求被并行发送,并且到达目的地时也许 顺序是乱的 。 Elasticsearch 需要一种方法确保文档的旧版本不会覆盖新的版本。

当我们之前讨论 index , GET 和 delete 请求时,我们指出每个文档都有一个 _version(版本)号,当文档被修改时版本号递增。 Elasticsearch 使用这个 version 号来确保变更以正确顺序得到执行。如果旧版本的文档在新版本之后到达,它可以被简单的忽略。

我们可以利用 version 号来确保 应用中相互冲突的变更不会导致数据丢失。我们通过指定想要修改文档的 version 号来达到这个目的。 如果该版本不是当前版本号,我们的请求将会失败。

老的版本 es 使用 version,但是新版本不支持了,会报下面的错误,提示我们用 if_seq_no
和 if_primary_term。

{
    "error": {
        "root_cause": [
            {
                "type": "action_request_validation_exception",
                "reason": "Validation Failed: 1: internal versioning can not be used for optimistic concurrency control. Please use `if_seq_no` and `if_primary_term` instead;"
            }
        ],
        "type": "action_request_validation_exception",
        "reason": "Validation Failed: 1: internal versioning can not be used for optimistic concurrency control. Please use `if_seq_no` and `if_primary_term` instead;"
    },
    "status": 400
}

3、外部系统版本控制

个常见的设置是使用其它数据库作为主要的数据存储,使用 Elasticsearch 做数据检索, 这意味着主数据库的所有更改发生时都需要被复制到 Elasticsearch ,如果多个进程负责这一数据同步,你可能遇到类似于之前描述的并发问题。

如果你的主数据库已经有了版本号 — 或一个能作为版本号的字段值比如 timestamp —那么你就可以在 Elasticsearch 中通过增加 version_type=external 到查询字符串的方式重用这些相同的版本号, 版本号必须是大于零的整数, 且小于 9.2E+18 — 一个 Java 中 long类型的正值。

外部版本号的处理方式和我们之前讨论的内部版本号的处理方式有些不同,Elasticsearch 不是检查当前 _version 和请求中指定的版本号是否相同, 而是检查当前_version 是否 小于 指定的版本号。 如果请求成功,外部的版本号作为文档的新 _version进行存储。

 

 外部版本号不仅在索引和删除请求是可以指定,而且在 创建 新文档时也可以指定。

五、SpringData框架集成

1、介绍

Spring Data Elasticsearch 基于 spring data API 简化 Elasticsearch 操作,将原始操作Elasticsearch 的客户端 API 进行封装 。Spring Data 为 Elasticsearch 项目提供集成搜索引擎。
Spring Data Elasticsearch POJO 的关键功能区域为中心的模型与 Elastichsearch 交互文档和轻松地编写一个存储索引库数据访问层。

Spring Data Elasticsearch 版本对比

Spring boot2.3.x 一般可以兼容 Elasticsearch7.x

2、框架集成

1)pom 文件

<parent>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-parent</artifactId>
    <version>2.3.6.RELEASE</version>
    <relativePath/>
</parent>

<properties>
    <maven.compiler.source>8</maven.compiler.source>
    <maven.compiler.target>8</maven.compiler.target>
</properties>

<dependencies>
    <dependency>
        <groupId>org.projectlombok</groupId>
        <artifactId>lombok</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-data-elasticsearch</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-devtools</artifactId>
        <scope>runtime</scope>
        <optional>true</optional>
    </dependency>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-test</artifactId>
        <scope>test</scope>
    </dependency>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-test</artifactId>
    </dependency>
    <dependency>
        <groupId>junit</groupId>
        <artifactId>junit</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework</groupId>
        <artifactId>spring-test</artifactId>
    </dependency>
</dependencies>

2)增加配置文件 

elasticsearch:
  #es服务地址
  host: 192.168.16.106
  #es服务端口
  port: 9200

3)SpringBoot主程序

@SpringBootApplication
public class SpringDataElasticSearchMainApplication {
    public static void main(String[] args) {
        SpringApplication.run(SpringDataElasticSearchMainApplication.class,args);
    }
}

4)数据实体类

@Data
@NoArgsConstructor
@AllArgsConstructor
@ToString
public class Product {
    private Long id;  //商品唯一标识
    private String title;//商品名称
    private String category;//分类名称
    private Double price;//商品价格
    private String images;//图片地址
}

5)配置类

  1. ElasticsearchRestTemplate 是 spring-data-elasticsearch 项目中的一个类,和其他 spring 项目中的 template类似。
  2. 在新版的 spring-data-elasticsearch 中,ElasticsearchRestTemplate 代替了原来的 ElasticsearchTemplate。
  3. 原因是 ElasticsearchTemplate 基于 TransportClient,TransportClient 即将在 8.x 以后的版本中移除。所以,我们推荐使用 ElasticsearchRestTemplate。
  4. ElasticsearchRestTemplate 基 于 RestHighLevelClient 客 户 端 的 。 需要自定义配置类, 继承AbstractElasticsearchConfiguration,并实现 elasticsearchClient()抽象方法,创建RestHighLevelClient 对象。
//将配置文件中以elasticsearch为前缀的配置注入
@ConfigurationProperties(prefix = "elasticsearch")
@Configuration
@Data
public class ElasticSearchConfig extends AbstractElasticsearchConfiguration {
    private String host;
    private Integer port;
    @Override
    public RestHighLevelClient elasticsearchClient() {
        RestClientBuilder builder = RestClient.builder(new HttpHost(host, port));
        RestHighLevelClient  restHighLevelClient  =  new RestHighLevelClient(builder);
        return restHighLevelClient;
    }
}

6)DAO 数据访问对象

ElasticsearchRepository<T,ID>: 第一个参数为关于数据的类,第二个为标注了@Id的属性的类型

@Repository
public interface ProduceDao extends ElasticsearchRepository<Product,Long> {
}

7)实体类映射操作

@Data
@NoArgsConstructor
@AllArgsConstructor
@ToString
//主分片 3 个,副本一个
@Document(indexName = "product",shards = 3,replicas = 1)
public class Product {
    //必须有 id,这里的 id 是全局唯一的标识,等同于 es 中的"_id"
    @Id
    private Long id;

   /**
    * type : 字段数据类型
    * analyzer : 分词器类型
    * index : 是否索引(默认:true)
    * Keyword : 短语,不进行分词
    */

    @Field(type = FieldType.Text,analyzer = "ik_max_word")
    private String title;

    @Field(type = FieldType.Keyword)
    private String category;

    @Field(type = FieldType.Double)
    private Double price;

    @Field(type = FieldType.Keyword, index = false)
    private String images;
}

8)索引操作

@RunWith(SpringRunner.class)
@SpringBootTest
public class SpringDataESIndexTest {

    @Autowired
    private ElasticsearchRestTemplate elasticsearchRestTemplate;

    @Test
    public void createIndex(){
        //系统初始化会自动创建索引
        System.out.println("创建索引");
    }

    @Test
    public void deleteIndex(){
        boolean flag = elasticsearchRestTemplate.deleteIndex(Product.class);
        System.out.println("删除索引:"+flag);
    }
}

9)文档操作

@RunWith(SpringRunner.class)
@SpringBootTest
public class SpringDataESProductDaoTest {

    @Autowired
    private ProduceDao produceDao;

    @Test
    public void save(){
        produceDao.save(new Product(1L,"小米手机","华为",3000D,"d:/sd"));
    }

    @Test
    public void findById(){
        Product product = produceDao.findById(1L).get();
        System.out.println(product);
    }

    @Test
    public void update(){
        produceDao.save(new Product(1L,"华为手机2","华为",3000D,"d:/sd"));
    }

    @Test
    public void findAll(){
        Iterable<Product> products = produceDao.findAll();
        for (Product product : products) {
            System.out.println(product);
        }
    }

    @Test
    public void saveAll(){
        List<Product> productList = new ArrayList<>();
        for (int i = 0; i < 10; i++) {
            Product product = new Product();
            product.setId(Long.valueOf(i));
            product.setTitle("["+i+"]小米手机");
            product.setCategory("手机");
            product.setPrice(1999.0+i);
            product.setImages("http://www.atguigu/xm.jpg");
            productList.add(product);
        }
        produceDao.saveAll(productList);
    }

    @Test
    public void delete(){
        Product product = new Product();
        product.setId(1L);
        productDao.delete(product);
     }

    //分页查询
    @Test
    public void findByPageable(){
       //设置排序(排序方式,正序还是倒序,排序的 id)
        Sort sort = Sort.by(Sort.Direction.DESC,"id");
        int from = 0;//当前页,第一页从 0 开始,1 表示第二页
        int size = 5;//每页显示多少条
        //设置查询分页
        PageRequest pageRequest = PageRequest.of(from,size,sort);

        //分页查询
        Page<Product> productPage = produceDao.findAll(pageRequest);
        for (Product Product : productPage.getContent()) {
            System.out.println(Product);
        }
    }
}

10)文档搜索

@RunWith(SpringRunner.class)
@SpringBootTest
public class SpringDataESSearchTest {

    @Autowired
    private ProduceDao produceDao;

    //term查询
    @Test
    public void termQuery(){
        PageRequest pageRequest = PageRequest.of(0,5);
        TermsQueryBuilder termsQueryBuilder = QueryBuilders.termsQuery("title", "小");
        Iterable<Product> products = produceDao.search(termsQueryBuilder,pageRequest);
        for (Product product : products) {
            System.out.println(product);
        }
    }

    //term查询加分页
    @Test
    public void termQueryByPage(){
        int currentPage= 0 ;
        int pageSize = 5;
        //设置查询分页
        PageRequest pageRequest = PageRequest.of(currentPage, pageSize);
        TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("title","小米");
        Iterable<Product> products = productDao.search(termQueryBuilder,pageRequest);
        for (Product product : products) {
            System.out.println(product);
        }
    }
}

六、ElasticSearch优化

1、合理设置分片数

分片和副本的设计为 ES 提供了支持分布式和故障转移的特性,但并不意味着分片和副本是可以无限分配的。而且索引的分片完成分配后由于索引的路由机制,我们是不能重新修改分片数的。

首先了解以下内容:

1)一个分片的底层即为一个 Lucene 索引,会消耗一定文件句柄、内存、以及 CPU 运转。

2)每一个搜索请求都需要命中索引中的每一个分片,如果每一个分片都处于不同的节点还好, 但如果多个分片都需要在同一个节点上竞争使用相同的资源就有些糟糕了。

3)用于计算相关度的词项统计信息是基于分片的。如果有许多分片,每一个都只有很少的数据会导致很低的相关度。

一般来说,我们遵循一些原则:

1)控制每个分片占用的硬盘容量不超过 ES 的最大 JVM 的堆空间设置(一般设置不超过32G,参考下文的 JVM 设置原则),因此,如果索引的总容量在 500G 左右,那分片大小在 16 个左右即可;当然,最好同时考虑原则2。

简单解释以下,内存中的数据要放到文件系统缓冲区中才能被查询,如果内存设置的很大,操作系统的缓存就会变少,这样你的数据就会频繁落盘,性能受到影响。

2)考虑一下 node 数量,一般一个节点有时候就是一台物理机,如果分片数过多,大大超过了节点数,很可能会导致一个节点上存在多个分片,一旦该节点故障,即使保持了 1 个以上的副本,同样有可能会导致数据丢失,集群无法恢复。所以, 一般都设置分片数不超过节点数的 3 倍。

3)主分片,副本和节点最大数之间数量,我们分配的时候可以参考以下关系:

节点数<=主分片数*(副本数+1)

2、推迟分片分配 

对于节点瞬时中断的问题,默认情况,集群会等待一分钟来查看节点是否会重新加入,如果这个节点在此期间重新加入,重新加入的节点会保持其现有的分片数据,不会触发新的分片分配。这样就可以减少 ES 在自动再平衡可用分片时所带来的极大开销

通过修改参数 delayed_timeout ,可以延长再均衡的时间,可以全局设置也可以在索引级别进行修改:

PUT /_all/_settings
{
    "settings": {
        "index.unassigned.node_left.delayed_timeout": "5m"
    }
}

3、路由选择 

当我们查询文档的时候,Elasticsearch 如何知道一个文档应该存放到哪个分片中呢?它其实是通过下面这个公式来计算出来:                                                                                                    shard = hash(routing) % number_of_primary_shards                                                                  routing 默认值是文档的 id,也可以采用自定义值,比如用户 id。

不带 routing  查询

在查询的时候因为不知道要查询的数据具体在哪个分片上,所以整个过程分为 2 个步骤

分发:请求到达协调节点后,协调节点将查询请求分发到每个分片上。
聚合: 协调节点搜集到每个分片上查询结果,在将查询的结果进行排序,之后给用户返回结果。

带 routing  查询

查询的时候,可以直接根据 routing 信息定位到某个分配查询,不需要查询所有的分配,经
过协调节点排序。
像上面自定义的用户查询,如果 routing 设置为 userid 的话,就可以直接查询出数据来,效率提升很多。

4、写入速度优化 

1)批量数据提交

ES 提供了 Bulk API 支持批量操作,当我们有大量的写任务时,可以使用 Bulk 来进行批量写入。

通用的策略如下:Bulk 默认设置批量提交的数据量不能超过 100M。数据条数一般是根据文档的大小和服务器性能而定的,但是单次批处理的数据大小应从 5MB~15MB 逐渐增加,当性能没有提升时,把这个数据量作为最大值。 

2)优化存储设备

ES 是一种密集使用磁盘的应用,在段合并的时候会频繁操作磁盘,所以对磁盘要求较高,当磁盘速度提升之后,集群的整体性能会大幅度提高。

3)合理使用合并

Lucene 以段的形式存储数据。当有新的数据写入索引时,Lucene 就会自动创建一个新的段。

随着数据量的变化,段的数量会越来越多,消耗的多文件句柄数及 CPU 就越多,查询效率就会下降。

 由于 Lucene 段合并的计算量庞大,会消耗大量的 I/O,所以 ES 默认采用较保守的策略,让后台定期进行段合并。

4)减少 Refresh 的次数

Lucene 在新增数据时,采用了延迟写入的策略,默认情况下索引的 refresh_interval 为1 秒。

Lucene 将待写入的数据先写到内存中,超过 1 秒(默认)时就会触发一次 Refresh,然后 Refresh 会把内存中的的数据刷新到操作系统的文件缓存系统中。

如果我们对搜索的实效性要求不高,可以将 Refresh 周期延长,例如 30 秒。

这样还可以有效地减少段刷新次数,但这同时意味着需要消耗更多的 Heap 内存。

5)加大 Flush 设置

Flush 的主要目的是把文件缓存系统中的段持久化到硬盘,当 Translog 的数据量达到512MB 或者 30 分钟时,会触发一次 Flush。

index.translog.flush_threshold_size 参数的默认值是 512MB,我们进行修改。

增加参数值意味着文件缓存系统中可能需要存储更多的数据,所以我们需要为操作系统的文件缓存系统留下足够的空间。

6)减少副本的数量

为了保证集群的可用性,提供了 Replicas(副本)支持,然而每个副本也会执行分析、索引及可能的合并过程,所以 Replicas 的数量会严重影响写索引的效率。

当写索引时,需要把写入的数据都同步到副本节点,副本节点越多,写索引的效率就越慢。

如果我们需要大批量进行写入操作 ,可以先禁止Replica复 制 ,设 置index.number_of_replicas: 0 关闭副本。在写入完成后,Replica 修改回正常的状态。

5、内存设置

 ES 堆内存的分配需要满足以下两个原则:

1) 不要超过物理内存的 50%

2) 堆内存的大小最好不要超过 32GB

假设你有个机器有 128 GB 的内存,你可以创建两个节点,每个节点内存分配不超过 32 GB。 也就是说不超过 64 GB 内存给 ES 的堆内存,剩下的超过 64 GB 的内存给 Lucene。

6、重要配置

cluster.name = elasticsearch  

配置 ES 的集群名称,默认值是  elasticsearch ,建议改成与所存数据相关的名称,ES 会自动发现在同一网段下的集群名称相同的节点。

node.name  =  node-1  

集群中的节点名,在同一个集群中不能重复。节点的名称一旦设置,就不能再改变了。当然,也可以设置成服务器的主机名称 ,例如node.name:${HOSTNAME}。 

node.master  = true

指定该节点是否有资格被选举成为 Master 节点,默认是 True,如果被设置为 True,则只是有资格成为Master 节点,具体能否成为 Master 节点,需要通过选举产生。 

node.data  = true  

指定该节点是否存储索引数据,默认为 True。数据的增、删、改、查都是在 Data 节点完成的 

index.number_of_shards  = 1

设置索引分片个数,默认是 1 片。也可以在创建索引时设置该值,具体设置为多大都值要根据数据量的大小来定。如果数据量不大,则设置成 1 时效率最高 

index.number_of_replicas  = 1

设置默认的索引副本个数,默认为 1 个。副本数越多,集群的可用性越好,但是写索引时需要同步的数据越多。 

transport.tcp.compress  = false 

设置在节点间传输数据时是否压缩,默认为 False,不压缩

discovery.zen.minimum_master_nodes = 1

设置在选举 Master 节点时需要参与的最少的候选主节点数,默认为 1。如果使用默认值,则当网络不稳定时有可能会出现脑裂。合 理 的 数 值 为 (master_eligible_nodes/2)+1 , 其中
master_eligible_nodes 表示集群中的候选主节点数 

discovery.zen.ping.timeout  = 3s

设置在集群中自动发现其他节点时 Ping 连接的超时时间,默认为 3 秒。在较差的网络环境下需要设置得大一点,防止因误判该节点的存活状态而导致分片的转移。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小鲁蛋儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值