# 导入工具包
import matplotlib.pyplot as plt
from PIL import Image
import torch
from torchvision.models import resnet18
from torchcam.methods import SmoothGradCAMpp
# CAM GradCAM GradCAMpp ISCAM LayerCAM SSCAM ScoreCAM SmoothGradCAMpp XGradCAM
from torchvision import transforms
from torchcam.utils import overlay_mask
import pandas as pd
from PIL import ImageFont, ImageDraw
def torchcam_single_ImageNet4(image_path,csv_file,show_class_id,Chinese,font):
# 有 GPU 就用 GPU,没有就用 CPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('device', device)
# 导入ImageNet预训练模型
model = resnet18(pretrained=True).eval().to(device)
# 导入可解释性分析方法
cam_extractor = SmoothGradCAMpp(model)
# 测试集图像预处理-RCTN:缩放、裁剪、转 Tensor、归一化
test_transform = transforms.Compose([transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
# 整理代码:设置类别、中文类别显示
# 载入ImageNet 1000图像分类标签
# ImageNet 1000类别中文释义:https://github.com/ningbonb/imagenet_classes_chinese
df = pd.read_csv(csv_file)
idx_to_labels = {}
idx_to_labels_cn = {}
for idx, row in df.iterrows():
idx_to_labels[row['ID']] = row['class']
idx_to_labels_cn[row['ID']] = row['Chinese']
show_class_id=show_class_id
Chinese=Chinese
font=font
img_pil = Image.open(image_path)
input_tensor = test_transform(img_pil).unsqueeze(0).to(device) # 预处理
# 对输入张量进行模型推断
pred_logits = model(input_tensor) # 使用模型进行推断,获取预测 logits(未经 softmax 处理的输出)
# 获取最可能的类别标签
pred_top1 = torch.topk(pred_logits, 1) # 从预测 logits 中获取最高的概率及对应的索引
pred_id = pred_top1[1].detach().cpu().numpy().squeeze().item() # 将预测结果从张量转换为 NumPy 数组,并提取最可能的类别索引
# 可视化热力图的类别ID,如果不指定,则为置信度最高的预测类别ID
if show_class_id:
show_id = show_class_id
else:
show_id = pred_id
# 生成可解释性分析热力图
activation_map = cam_extractor(show_id, pred_logits) # 使用 cam_extractor 函数生成类激活图,传入预测的类别索引和预测 logits
# 处理激活图结果
activation_map = activation_map[0][0].detach().cpu().numpy() # 从张量中提取类激活图的 NumPy 数组表示
result = overlay_mask(img_pil, Image.fromarray(activation_map), alpha=0.5)# 用于将类激活图(Activation Map)叠加到原始图像上,以可视化模型对输入图像的关注区域。
# 在图像上写字
draw = ImageDraw.Draw(result)
if Chinese:
# 在图像上写中文
text_pred = 'Pred Class: {}'.format(idx_to_labels_cn[pred_id])
text_show = 'Show Class: {}'.format(idx_to_labels_cn[show_class_id])
else:
# 在图像上写英文
text_pred = 'Pred Class: {}'.format(idx_to_labels[pred_id])
text_show = 'Show Class: {}'.format(idx_to_labels[show_class_id])
# 文字坐标,中文字符串,字体,rgba颜色
draw.text((50, 100), text_pred, font=font, fill=(255, 0, 0, 1))
draw.text((50, 200), text_show, font=font, fill=(255, 0, 0, 1))
# 可视化
plt.subplots(figsize=(6, 6))
plt.imshow(result)
plt.show()
if __name__ == '__main__':
image_path='test_img/cat_dog.jpg'
csv_file_path='imagenet_class_index.csv'
# 可视化热力图的类别ID,如果为 None,则为置信度最高的预测类别ID
show_class_id = 231
# 是否显示中文类别
Chinese = True # False
# 导入中文字体,指定字体大小
font_path='SimHei.ttf'
font_size=80
font = ImageFont.truetype(font_path, font_size)
torchcam_single_ImageNet4(image_path,
csv_file_path,
show_class_id,
Chinese,
font)
torchcam-single-ImageNet4
于 2023-11-29 22:21:14 首次发布