【Java之集合篇】——Java集合

本文深入讲解Java集合框架,包括Collection、List、Set、Map等核心接口及其实现类,如ArrayList、LinkedList、HashSet、TreeSet、HashMap等。文章还介绍了迭代器、foreach循环的使用方法,以及Collections工具类的功能。

目录:

集合的作用

集合的框架

Collection接口中的常用方法(代码

补充一个小“”芝士“”: foreach循环的使用

Collection接口的子接口之一——List接口

                ArryayList的源码分析

                LinkedList的源码分析

                Vector的源码分析

Collection接口的子接口之一——Set接口

                HashSet底层代码原理

                LInkHashSet底层代码原理

                Java比较器:自然排序(Compareable接口)、定制排序(Comparator接口)

                TreeSet底层代码

 Collection接口的子接口之一——Map接口

                Map接口的底层原理

                Map中定义的方法(代码)

                Propertise处理属性文件

Collections工具类的使用


集合的作用

数组、集合都是对多个数据进行存储操作的结构。

Java集合就像是一种容器,可以动态地把多个对象的引用放入到容器中。

既然集合跟数组的作用一样,我们为什么要使用数组呢?因为我们使用数组时会遇到以下几个缺点可以通过使用集合来解决:

1.一旦初始化后,其长度就不可修改了;

2.数组中提供的方法非常有限,对于添加、删除、插入数据等操作非常不便,同时效率不高;

3.想要获取数组中实际元素个数的需求,数组没有现成的属性或方法可用;

4.数组存储数据的特点:有序、可重复。对于无序、不可重复的需求就不能满足。


集合的框架

来看一张图就能非常明白:


Collection接口中的常用方法(代码)

直接看代码示例:

1.add(Object e):将元素e添加到集合coll中
2.size():获取添加的元素的个数
3.addAll(Collection coll1):将coll1集合中的元素添加到当前的集合中
4.clear():清空集合元素
5.isEmpty():判断当前集合是否为空

6.contains(Object obj):判断当前集合中是否包含obj
7.containsAll(Collection coll1):判断形参coll1中的所有元素是否都存在于当前集合中。
8.remove(Object obj):从当前集合中移除obj元素。
9. removeAll(Collection coll1):差集:从当前集合中移除coll1中所有的元素。
10.retainAll(Collection coll1):交集:获取当前集合和coll1集合的交集,并返回给当前集合
11.equals(Object obj):要想返回true,需要当前集合和形参集合的元素都相同。
12.hashCode():返回当前对象的哈希值
13.将集合转换为数组:toArray()
              拓展:将数组转换为集合:调用Arrays类的静态方法asList()
14.集合元素的遍历操作,使用迭代器Iterator接口

package java2;

import org.junit.Test;

import java.util.ArrayList;
import java.util.Collection;
import java.util.Date;

/**
 * Collection接口中的方法的使用
 * 1.add(Object e):将元素e添加到集合coll中
 * 2.size():获取添加的元素的个数
 * 3.addAll(Collection coll1):将coll1集合中的元素添加到当前的集合中
 * 4.clear():清空集合元素
 * 5.isEmpty():判断当前集合是否为空
 *
 * @author 新时代好少年
 * @create 2019 下午 4:08
 */
public class CollectionTest {

    @Test
    public void test1(){
        //声明Collection方法
        Collection coll = new ArrayList();

        //add(Object e):将元素e添加到集合coll中
        coll.add("AA");
        coll.add("BB");
        coll.add(123);//自动装箱
        coll.add(new Date());

        //size():获取添加的元素的个数
        System.out.println(coll.size());//4

        //addAll(Collection coll1):将coll1集合中的元素添加到当前的集合中
        Collection coll1 = new ArrayList();
        coll1.add(456);
        coll1.add("CC");
        coll.addAll(coll1);//把coll1加入到coll里

        System.out.println(coll.size());//6
        System.out.println(coll);

        //clear():清空集合元素
        coll.clear();

        //isEmpty():判断当前集合是否为空
        System.out.println(coll.isEmpty());

    }

}
package javaDemo;

import org.junit.Test;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.List;

/**
 * Collection接口中声明的方法的测试
 * 6.contains(Object obj):判断当前集合中是否包含obj
 * 7.containsAll(Collection coll1):判断形参coll1中的所有元素是否都存在于当前集合中。
 * 8.remove(Object obj):从当前集合中移除obj元素。
 * 9. removeAll(Collection coll1):差集:从当前集合中移除coll1中所有的元素。
 * 10.retainAll(Collection coll1):交集:获取当前集合和coll1集合的交集,并返回给当前集合
 * 11.equals(Object obj):要想返回true,需要当前集合和形参集合的元素都相同。
 * 12.hashCode():返回当前对象的哈希值
 * 13.将集合转换为数组:toArray()
 *      拓展:将数组转换为集合:调用Arrays类的静态方法asList()
 *
 *
 * 结论:
 * 向Collection接口的实现类的对象中添加数据obj时,要求obj所在类要重写equals()!!!
 *
 * @author shkstart
 * @create 2019 上午 10:04
 */
public class CollectionTest {


    @Test
    public void test1(){
        //先造集合
        Collection coll = new ArrayList();
        coll.add(123);
        coll.add(456);
        coll.add(new String("Tom"));
//        Person p = new Person("Jerry",20);//自定义的一个Person类,形参为名字、年龄
//        coll.add(p);
        coll.add(new Person("Jerry",20));
        coll.add(false);
        //1.contains(Object obj):判断当前集合中是否包含obj
        //我们在判断时会调用obj对象所在类的equals()。
        boolean contains = coll.contains(123);
        System.out.println(contains);//true,因为集合中包含
        System.out.println(coll.contains(new String("Tom")));//true,通过这里可以看出contains使用equals方法进行比较
//        System.out.println(coll.contains(p));//true
        System.out.println(coll.contains(new Person("Jerry",20)));//false -->true,这里想要结果为true,就需要在Pseron类中重写equals方法


        //2.containsAll(Collection coll1):判断形参coll1中的所有元素是否都存在于当前集合中。
        Collection coll1 = Arrays.asList(123,4567);
        System.out.println(coll.containsAll(coll1));
    }

    @Test
    public void test2(){
        //3.remove(Object obj):从当前集合中移除obj元素。这里也用到了equal()方法
        Collection coll = new ArrayList();
        coll.add(123);
        coll.add(456);
        coll.add(new Person("Jerry",20));
        coll.add(new String("Tom"));
        coll.add(false);

        coll.remove(1234);
        System.out.println(coll);

        coll.remove(new Person("Jerry",20));
        System.out.println(coll);

        //4. removeAll(Collection coll1):差集:从当前集合中移除coll1中所有的元素。
        Collection coll1 = Arrays.asList(123,456);
        coll.removeAll(coll1);
        System.out.println(coll);


    }

    @Test
    public void test3(){
        Collection coll = new ArrayList();
        coll.add(123);
        coll.add(456);
        coll.add(new Person("Jerry",20));
        coll.add(new String("Tom"));
        coll.add(false);

        //5.retainAll(Collection coll1):交集:获取当前集合和coll1集合的交集,并返回给当前集合
//        Collection coll1 = Arrays.asList(123,456,789);
//        coll.retainAll(coll1);
//        System.out.println(coll);

        //6.equals(Object obj):要想返回true,需要当前集合和形参集合的元素都相同。
        Collection coll1 = new ArrayList();
        coll1.add(456);
        coll1.add(123);
        coll1.add(new Person("Jerry",20));
        coll1.add(new String("Tom"));
        coll1.add(false);

        System.out.println(coll.equals(coll1));


    }

    @Test
    public void test4(){
        Collection coll = new ArrayList();
        coll.add(123);
        coll.add(456);
        coll.add(new Person("Jerry",20));
        coll.add(new String("Tom"));
        coll.add(false);

        //7.hashCode():返回当前对象的哈希值
        System.out.println(coll.hashCode());

        //8.将集合转换为数组:toArray()
        Object[] arr = coll.toArray();
        for(int i = 0;i < arr.length;i++){
            System.out.println(arr[i]);
        }

        //拓展:将数组转换为集合:调用Arrays类的静态方法asList()
        List<String> list = Arrays.asList(new String[]{"AA", "BB", "CC"});
        System.out.println(list);

        List arr1 = Arrays.asList(new int[]{123, 456});
        System.out.println(arr1.size());//1,因为会把new int[]{123, 456}当成一个元素

        List arr2 = Arrays.asList(new Integer[]{123, 456});
        System.out.println(arr2.size());//2,用Integer[]就是两个元素,分别为123,456

        List arr3 = Arrays.asList(123, 456);
        System.out.println(arr3.size());//2,这样写也是两个元素

        

    }
}

迭代器Iterator接口:用于遍历集合元素。具体方法实现见下面代码。

迭代器的原理如下图,Iterator内部是有一个指针,开始时指针指向第一个红箭头的位置,调用next()方法指针向下移动一格,指向123,继续调用next()指针继续下移,以此类推...

Iterator内部定义了remove()方法,由于指针开始位置没有指向任何元素,所以在没有next()之前是不能调用remove()的,同理,在next()之后也不能连续调用remove(),因为指针没有下移,已经没有元素可以删除了。

package javaDemo;

import org.junit.Test;

import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;

/**
 * 集合元素的遍历操作,使用迭代器Iterator接口
 * 1.内部的方法:hasNext() 和  next()
 * 2.集合对象每次调用iterator()方法都得到一个全新的迭代器对象,
 * 默认游标都在集合的第一个元素之前。
 * 3.内部定义了remove(),可以在遍历的时候,删除集合中的元素。此方法不同于集合直接调用remove(),这是iterator中的remove()
 *
 * @author 新时代好少年
 * 
 */
public class IteratorTest {

    @Test
    public void test1(){
        Collection coll = new ArrayList();
        coll.add(123);
        coll.add(456);
        coll.add(new Person("Jerry",20));
        coll.add(new String("Tom"));
        coll.add(false);

        //创建迭代器iterator的对象
        Iterator iterator = coll.iterator();
        //方式一:
//        System.out.println(iterator.next());//出现集合第一个元素
//        System.out.println(iterator.next());//出现集合第二个元素
//        System.out.println(iterator.next());
//        System.out.println(iterator.next());
//        System.out.println(iterator.next());
//        //报异常:NoSuchElementException
//        System.out.println(iterator.next());

        //方式二:不大推荐
//        for(int i = 0;i < coll.size();i++){
//            System.out.println(iterator.next());
//        }

        //方式三:推荐
        ////hasNext():判断是否还有下一个元素
        while(iterator.hasNext()){
            //next():①指针下移 ②将下移以后集合位置上的元素返回
            System.out.println(iterator.next());
        }

    }

    @Test
    public void test2(){

        Collection coll = new ArrayList();
        coll.add(123);
        coll.add(456);
        coll.add(new Person("Jerry",20));
        coll.add(new String("Tom"));
        coll.add(false);

        //错误方式一:
//        Iterator iterator = coll.iterator();
//        while((iterator.next()) != null){
//            System.out.println(iterator.next());
//        }

        //错误方式二:
        //集合对象每次调用iterator()方法都得到一个全新的迭代器对象,默认游标都在集合的第一个元素之前。
        while (coll.iterator().hasNext()){
            System.out.println(coll.iterator().next());
        }


    }

    //测试Iterator中的remove()
    //如果还未调用next()或在上一次调用 next 方法之后已经调用了 remove 方法,
    // 再调用remove都会报IllegalStateException。
    @Test
    public void test3(){
        Collection coll = new ArrayList();
        coll.add(123);
        coll.add(456);
        coll.add(new Person("Jerry",20));
        coll.add(new String("Tom"));
        coll.add(false);

        //删除集合中"Tom"
        Iterator iterator = coll.iterator();
        while (iterator.hasNext()){
//            iterator.remove();//在没有next()之前不要调用remove()
            Object obj = iterator.next();
            if("Tom".equals(obj)){
                iterator.remove();
//                iterator.remove();//这里不能写两次,在没有重新next()是不可以继续调remove()
            }

        }
        //遍历集合
        //因为想要重新遍历集合中的元素,之前iterator中的指针已经走到头了,所以要重新创建
        iterator = coll.iterator();
        while (iterator.hasNext()){
            System.out.println(iterator.next());
        }
    }
}

补充一个小“”芝士“”: foreach循环(增强for循环)的使用

package javaDemo;

import org.junit.Test;

import java.util.ArrayList;
import java.util.Collection;

/**
 * jdk 5.0 新增了foreach循环,用于遍历集合、数组
 *
 * @author shkstart
 * @create 2019 上午 11:24
 */
public class ForTest {

    @Test
    public void test1(){
        Collection coll = new ArrayList();
        coll.add(123);
        coll.add(456);
        coll.add(new Person("Jerry",20));
        coll.add(new String("Tom"));
        coll.add(false);

        //for(集合元素的类型 局部变量 : 集合对象)
        //内部仍然调用了迭代器。
        for(Object obj : coll){
            System.out.println(obj);
        }
    }

    @Test
    public void test2(){
        int[] arr = new int[]{1,2,3,4,5,6};
        //for(数组元素的类型 局部变量 : 数组对象)
        for(int i : arr){
            System.out.println(i);
        }
    }

    //练习题
    @Test
    public void test3(){

        String[] arr = new String[]{"MM","MM","MM"};

//        //方式一:普通for赋值
//        for(int i = 0;i < arr.length;i++){
//            arr[i] = "GG";
//        }

        //方式二:增强for循环
        for(String s : arr){
            s = "GG";
        }

        for(int i = 0;i < arr.length;i++){
            System.out.println(arr[i]);
        }


    }
}

Collection接口的子接口之一——List接口

List集合类中的元素有序、且可重复,集合中的每个元素都有其对应的顺序索引。它相当于“动态”数组,替换原有的数组。

List接口的实现类常用的有:ArryList、LinkListVector

ArrayList:作为List接口的主要实现类;线程不安全的,效率高;底层使用Object[] elementData存储

LinkedList:对于频繁的插入、删除操作,使用此类效率比ArrayList高;底层使用双向链表存储

Vector:作为List接口的古老实现类;线程安全的,效率低;底层使用Object[] elementData存储


ArryayList的源码分析

jdk 7情况下:

ArrayList list = new ArrayList();//底层创建了长度是10的Object[]数组elementData

list.add(123); //底层原理:elementData[0] = new Integer(123);

...

list.add(11); //如果此次的添加导致底层elementData数组容量不够,则扩容。

默认情况下,扩容为原来的容量的1.5倍,同时需要将原有数组中的数据复制到新的数组中。

因为容量不够就需要再创建一个新的数组,再把原来的数组移动到新的数组中非常占用资源消耗效率,所以建议开发中使用带参的构造器:ArrayList list = new ArrayList(容量);

jdk 8中ArrayList的变化:

ArrayList list = new ArrayList();//底层Object[] elementData初始化为{}.并没有创建长度为10的数组

list.add(123);//第一次调用add()时,底层才创建了长度10的数组,并将数据123添加到elementData[0]

 ...

后续的添加和扩容操作与jdk 7 无异。

         小结:jdk7中的ArrayList的对象的创建类似于单例的饿汉式,而jdk8中的ArrayList的对象的创建类似于单例的懒汉式,延迟了数组的创建,节省内存。


LinkedList的源码分析

LinkedList list = new LinkedList(); 内部声明了Node类型的first和last属性,默认值为null
      list.add(123);//将123封装到Node中,创建了Node对象。

      其中,Node定义为下面代码。体现了LinkedList的双向链表的说法
      private static class Node<E> {
            E item;
            Node<E> next;
            Node<E> prev;

            Node(Node<E> prev, E element, Node<E> next) {
            this.item = element;
            this.next = next;
            this.prev = prev;
            }
        }

Vector的源码分析

jdk7和jdk8中通过Vector()构造器创建对象时,底层都创建了长度为10的数组。
在扩容方面,默认扩容为原来的数组长度的2倍。

List接口中的常见方法(代码)

1.void add(int index, Object ele):在index位置插入ele元素
2.boolean addAll(int index, Collection eles):从index位置开始将eles中的所有元素添加进来
3.Object get(int index):获取指定index位置的元素
4.int indexOf(Object obj):返回obj在集合中首次出现的位置
5.int lastIndexOf(Object obj):返回obj在当前集合中末次出现的位置
6.Object remove(int index):移除指定index位置的元素,并返回此元素
7.Object set(int index, Object ele):设置指定index位置的元素为ele
8.List subList(int fromIndex, int toIndex):返回从fromIndex到toIndex位置的子集合
总结:
增:add(Object obj)
删:remove(int index) / remove(Object obj)
改:set(int index, Object ele)
查:get(int index)
插:add(int index, Object ele)
长度:size()
遍历:① Iterator迭代器方式
      ② 增强for循环
      ③ 普通的循环
package javaDemo;

import org.junit.Test;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;

/**
代码测试顺序1/2/3,倒着看
 */
public class ListTest {

   @Test
    public void test3(){
        ArrayList list = new ArrayList();
        list.add(123);
        list.add(456);
        list.add("AA");

        //方式一:Iterator迭代器方式
        Iterator iterator = list.iterator();
        while(iterator.hasNext()){
            System.out.println(iterator.next());
        }

        System.out.println("***************");

        //方式二:增强for循环
        for(Object obj : list){
            System.out.println(obj);
        }

        System.out.println("***************");

        //方式三:普通for循环
        for(int i = 0;i < list.size();i++){
            System.out.println(list.get(i));
        }



    }


    @Test
    public void test2(){
        ArrayList list = new ArrayList();
        list.add(123);
        list.add(456);
        list.add("AA");
        list.add(new Person("Tom",12));
        list.add(456);
        //int indexOf(Object obj):返回obj在集合中首次出现的位置。如果不存在,返回-1.
        int index = list.indexOf(4567);
        System.out.println(index);

        //int lastIndexOf(Object obj):返回obj在当前集合中末次出现的位置。如果不存在,返回-1.
        System.out.println(list.lastIndexOf(456));

        //Object remove(int index):移除指定index位置的元素,并返回此元素
        Object obj = list.remove(0);
        System.out.println(obj);
        System.out.println(list);

        //Object set(int index, Object ele):设置指定index位置的元素为ele
        list.set(1,"CC");
        System.out.println(list);

        //List subList(int fromIndex, int toIndex):返回从fromIndex到toIndex位置的左闭右开区间的子集合
        List subList = list.subList(2, 4);
        System.out.println(subList);
        System.out.println(list);


    }


    @Test
    public void test1(){
        ArrayList list = new ArrayList();
        list.add(123);
        list.add(456);
        list.add("AA");
        list.add(new Person("Tom",12));
        list.add(456);

        System.out.println(list);

        //void add(int index, Object ele):在index位置插入ele元素
        list.add(1,"BB");
        System.out.println(list);

        //boolean addAll(int index, Collection eles):从index位置开始将eles中的所有元素添加进来
        List list1 = Arrays.asList(1, 2, 3);
        list.addAll(list1);
//        list.add(list1);
        System.out.println(list.size());//9

        //Object get(int index):获取指定index位置的元素
        System.out.println(list.get(0));

    }


}

Collection接口的子接口之一——Set接口

Collection接口:单列集合,用来存储一个一个的对象
        Set接口:存储无序的、不可重复的数据   -->高中讲的“集合”
                HashSet:作为Set接口的主要实现类;线程不安全的;可以存储null值
                LinkedHashSet:作为HashSet的子类;遍历其内部数据时,可以按照添加的顺序遍历。对于频繁的遍历操作,LinkedHashSet效率高于HashSet.
                TreeSet:可以按照添加对象的指定属性,进行排序。
Set接口中没有额外定义新的方法,使用的都是Collection中声明过的方法。

HashSet、LInkHashSet底层代码原理

一、Set:存储无序的、不可重复的数据
以HashSet为例说明:
1. 无序性:不等于随机性。存储的数据在底层数组中并非按照数组索引的顺序添加,而是根据数据的哈希值决定的。
2. 不可重复性:保证添加的元素按照equals()判断时,不能返回true.即:相同的元素只能添加一个。
二、添加元素的过程:以HashSet为例:
    我们向HashSet中添加元素a,首先调用元素a所在类的hashCode()方法,计算元素a的哈希值,
    此哈希值接着通过某种算法计算出在HashSet底层数组中的存放位置(即为:索引位置),判断
    数组此位置上是否已经有元素:
        如果此位置上没有其他元素,则元素a添加成功。 --->情况1
        如果此位置上有其他元素b(或以链表形式存在的多个元素),则比较元素a与元素b的hash值:
            如果hash值不相同,则元素a添加成功。--->情况2
            如果hash值相同,进而需要调用元素a所在类的equals()方法:
                   equals()返回true,元素a添加失败
                   equals()返回false,则元素a添加成功。--->情况2

    对于添加成功的情况2和情况3而言:元素a 与已经存在指定索引位置上数据以链表的方式存储。
    jdk 7 :元素a放到数组中,指向原来的元素。
    jdk 8 :原来的元素在数组中,指向元素a
    总结:七上八下
    HashSet底层:是数组+链表的结构。
三、LinkedHashSet的原理
        LinkedHashSet作为HashSet的子类,在添加数据的同时,每个数据还维护了两个引用,记录此数据前一个数据和后一个数据。
        优点:对于频繁的遍历操作,LinkedHashSet效率高于HashSet
四、要求:
        向Set(主要指:HashSet、LinkedHashSet)中添加的数据,其所在的类一定要重写hashCode()和equals()
        要求:重写的hashCode()和equals()尽可能保持一致性:相等的对象必须具有相等的散列码(散列码即哈希值)
        重写两个方法的小技巧:对象中用作 equals() 方法比较的 Field,都应该用来计算 hashCode 值。(简单来说:equals方法中使用的属性也在hashcode方法中使用来保证一致性)
package java1;

import org.junit.Test;

import java.util.HashSet;
import java.util.Iterator;
import java.util.LinkedHashSet;
import java.util.Set;

/**
 * 1. Set接口的框架:
 *
 * |----Collection接口:单列集合,用来存储一个一个的对象
 *          |----Set接口:存储无序的、不可重复的数据   -->高中讲的“集合”
 *              |----HashSet:作为Set接口的主要实现类;线程不安全的;可以存储null值
 *                  |----LinkedHashSet:作为HashSet的子类;遍历其内部数据时,可以按照添加的顺序遍历
 *                                      对于频繁的遍历操作,LinkedHashSet效率高于HashSet.
 *              |----TreeSet:可以按照添加对象的指定属性,进行排序。
 *
 *
 *  1. Set接口中没有额外定义新的方法,使用的都是Collection中声明过的方法。
 *
 *  2. 要求:向Set(主要指:HashSet、LinkedHashSet)中添加的数据,其所在的类一定要重写hashCode()和equals()
 *     要求:重写的hashCode()和equals()尽可能保持一致性:相等的对象必须具有相等的散列码
 *      重写两个方法的小技巧:对象中用作 equals() 方法比较的 Field,都应该用来计算 hashCode 值。
 *
 *
 
 */
public class SetTest {
    /*
    一、Set:存储无序的、不可重复的数据
    以HashSet为例说明:
    1. 无序性:不等于随机性。存储的数据在底层数组中并非按照数组索引的顺序添加,而是根据数据的哈希值决定的。

    2. 不可重复性:保证添加的元素按照equals()判断时,不能返回true.即:相同的元素只能添加一个。

    二、添加元素的过程:以HashSet为例:
        我们向HashSet中添加元素a,首先调用元素a所在类的hashCode()方法,计算元素a的哈希值,
        此哈希值接着通过某种算法计算出在HashSet底层数组中的存放位置(即为:索引位置),判断
        数组此位置上是否已经有元素:
            如果此位置上没有其他元素,则元素a添加成功。 --->情况1
            如果此位置上有其他元素b(或以链表形式存在的多个元素),则比较元素a与元素b的hash值:
                如果hash值不相同,则元素a添加成功。--->情况2
                如果hash值相同,进而需要调用元素a所在类的equals()方法:
                       equals()返回true,元素a添加失败
                       equals()返回false,则元素a添加成功。--->情况2

        对于添加成功的情况2和情况3而言:元素a 与已经存在指定索引位置上数据以链表的方式存储。
        jdk 7 :元素a放到数组中,指向原来的元素。
        jdk 8 :原来的元素在数组中,指向元素a
        总结:七上八下

        HashSet底层:数组+链表的结构。

     */

    @Test
    public void test1(){
        Set set = new HashSet();
        set.add(456);
        set.add(123);
        set.add(123);
        set.add("AA");
        set.add("CC");
        set.add(new User("Tom",12));
        set.add(new User("Tom",12));
        set.add(129);

        Iterator iterator = set.iterator();
        while(iterator.hasNext()){
            System.out.println(iterator.next());
        }
    }

    //LinkedHashSet的使用
    //LinkedHashSet作为HashSet的子类,在添加数据的同时,每个数据还维护了两个引用,记录此数据前一个
    //数据和后一个数据。
    //优点:对于频繁的遍历操作,LinkedHashSet效率高于HashSet
    @Test
    public void test2(){
        Set set = new LinkedHashSet();
        set.add(456);
        set.add(123);
        set.add(123);
        set.add("AA");
        set.add("CC");
        set.add(new User("Tom",12));
        set.add(new User("Tom",12));
        set.add(129);

        Iterator iterator = set.iterator();
        while(iterator.hasNext()){
            System.out.println(iterator.next());
        }
    }
}

Java比较器:自然排序(Compareable接口)、定制排序(Comparator接口)

在讲TreeSet底层代码之前先得了解一个“芝士”:Java比较器

在Java中经常会涉及到对象数组的排序问题,那么就涉及到对象之间的比较问题。(这里要求大家会写出两个比较方法的代码)

Java实现对象排序的方式有两种:

自然排序:java.lang.Comparable

定制排序:java.util.Comparator

    @Test
    public void test2(){
        Goods[] arr = new Goods[5];
        arr[0] = new Goods("lenovoMouse",34);
        arr[1] = new Goods("dellMouse",43);
        arr[2] = new Goods("xiaomiMouse",12);
        arr[3] = new Goods("huaweiMouse",65);
        arr[4] = new Goods("microsoftMouse",43);

        Arrays.sort(arr);

        System.out.println(Arrays.toString(arr));
    }

 Comparable接口的使用举例: 自然排序

1.像String、包装类等实现了Comparable接口,重写了compareTo(obj)方法,给出了比较两个对象大小的方式。

2.像String、包装类重写compareTo()方法以后,进行了从小到大的排列

3. 重写compareTo(obj)的规则: 如果当前对象this大于形参对象obj,则返回正整数, 如果当前对象this小于形参对象obj,则返回负整数, 如果当前对象this等于形参对象obj,则返回零。

4. 对于自定义类来说,如果需要排序,我们可以让自定义类实现Comparable接口,重写compareTo(obj)方法。 在compareTo(obj)方法中指明如何排序

光说不用扯Du子,我们来看下方代码:

    @Test
    public void test2(){
        Goods[] arr = new Goods[5];
        arr[0] = new Goods("lenovoMouse",34);
        arr[1] = new Goods("dellMouse",43);
        arr[2] = new Goods("xiaomiMouse",12);
        arr[3] = new Goods("huaweiMouse",65);
        arr[4] = new Goods("microsoftMouse",43);

        Arrays.sort(arr);

        System.out.println(Arrays.toString(arr));
    }
package javaDemo;

/**
 * 商品类

 */
//1.实现Comparable接口
public class  Goods implements  Comparable{

    private String name;
    private double price;

    public Goods() {
    }

    public Goods(String name, double price) {
        this.name = name;
        this.price = price;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public double getPrice() {
        return price;
    }

    public void setPrice(double price) {
        this.price = price;
    }

    @Override
    public String toString() {
        return "Goods{" +
                "name='" + name + '\'' +
                ", price=" + price +
                '}';
    }

    //指明商品比较大小的方式:按照价格从低到高排序,再按照产品名称从高到低排序
    @Override
    //2.重写compareTo方法
    public int compareTo(Object o) {
//        System.out.println("**************");
        //3.判断比较的商品o是否为Goods类型
        if(o instanceof Goods){
            //4.将商品o进行强转
            Goods goods = (Goods)o;
            //方式一:
            if(this.price > goods.price){
                return 1;
            }else if(this.price < goods.price){
                return -1;
            }else{
//                return 0;//按照价格从低到高排序
               return -this.name.compareTo(goods.name);//按照价格从低到高排序,再按照产品名称从高到低排序,因为这里name已经重写了String方法,所以直接用compareTo()比较即可
            }
            //方式二:
//           return Double.compare(this.price,goods.price);
        }
//        return 0;
        throw new RuntimeException("传入的数据类型不一致!");
    }
}

 Comparator接口的使用举例: 定制排序

1.背景: 当元素的类型没有实现java.lang.Comparable接口而又不方便修改代码, 或者实现了java.lang.Comparable接口的排序规则不适合当前的操作, 那么可以考虑使用 Comparator 的对象来排序

2.重写compare(Object o1,Object o2)方法,比较o1和o2的大小: 如果方法返回正整数,则表示o1大于o2; 如果返回0,表示相等; 返回负整数,表示o1小于o2。

    @Test
    public void test3(){
        String[] arr = new String[]{"AA","CC","KK","MM","GG","JJ","DD"};
        Arrays.sort(arr,new Comparator(){//因为只用到一次,我们使用匿名方式创建

            //按照字符串从大到小的顺序排列
            @Override
            public int compare(Object o1, Object o2) {
                if(o1 instanceof String && o2 instanceof  String){
                    String s1 = (String) o1;
                    String s2 = (String) o2;
                    return -s1.compareTo(s2);
                }
//                return 0;
                throw new RuntimeException("输入的数据类型不一致");
            }
        });
        System.out.println(Arrays.toString(arr));
    }

    @Test
    public void test4(){
        Goods[] arr = new Goods[6];
        arr[0] = new Goods("lenovoMouse",34);
        arr[1] = new Goods("dellMouse",43);
        arr[2] = new Goods("xiaomiMouse",12);
        arr[3] = new Goods("huaweiMouse",65);
        arr[4] = new Goods("huaweiMouse",224);
        arr[5] = new Goods("microsoftMouse",43);

        Arrays.sort(arr, new Comparator() {
            //指明商品比较大小的方式:按照产品名称从低到高排序,再按照价格从高到低排序
            @Override
            public int compare(Object o1, Object o2) {
                if(o1 instanceof Goods && o2 instanceof Goods){
                    Goods g1 = (Goods)o1;
                    Goods g2 = (Goods)o2;
                    if(g1.getName().equals(g2.getName())){
                        return -Double.compare(g1.getPrice(),g2.getPrice());
                    }else{
                        return g1.getName().compareTo(g2.getName());
                    }
                }
                throw new RuntimeException("输入的数据类型不一致");
            }
        });

        System.out.println(Arrays.toString(arr));
    }

}

TreeSet底层代码

TreeSet:可以按照添加对象的指定属性,进行排序。所以不可以是两个不同类造的对象存入TreeSet。

1.向TreeSet中添加的数据,要求是相同类的对象。
2.两种排序方式:自然排序(实现Comparable接口) 和 定制排序(Comparator)
package java1;

import org.junit.Test;

import java.util.Comparator;
import java.util.Iterator;
import java.util.TreeSet;

/**
 * 
 */
public class TreeSetTest {

    /*
    1.向TreeSet中添加的数据,要求是相同类的对象。
    2.两种排序方式:自然排序(实现Comparable接口) 和 定制排序(Comparator)


    3.自然排序中,比较两个对象是否相同的标准为:compareTo()返回0.不再是equals().
    4.定制排序中,比较两个对象是否相同的标准为:compare()返回0.不再是equals().
     */
    @Test
    public void test1(){
        TreeSet set = new TreeSet();

        //失败:不能添加不同类的对象
//        set.add(123);
//        set.add(456);
//        set.add("AA");
//        set.add(new User("Tom",12));

            //举例一:
//        set.add(34);
//        set.add(-34);
//        set.add(43);
//        set.add(11);
//        set.add(8);

        //举例二:添加自定义的对象
        set.add(new User("Tom",12));
        set.add(new User("Jerry",32));
        set.add(new User("Jim",2));
        set.add(new User("Mike",65));
        set.add(new User("Jack",33));
        set.add(new User("Jack",56));


        Iterator iterator = set.iterator();
        while(iterator.hasNext()){
            System.out.println(iterator.next());
        }

    }

    @Test
    public void test2(){
        Comparator com = new Comparator() {//定制排序
            //按照年龄从小到大排列
            @Override
            public int compare(Object o1, Object o2) {
                if(o1 instanceof User && o2 instanceof User){
                    User u1 = (User)o1;
                    User u2 = (User)o2;
                    return Integer.compare(u1.getAge(),u2.getAge());
                }else{
                    throw new RuntimeException("输入的数据类型不匹配");
                }
            }
        };

        TreeSet set = new TreeSet(com);
        set.add(new User("Tom",12));
        set.add(new User("Jerry",32));
        set.add(new User("Jim",2));
        set.add(new User("Mike",65));
        set.add(new User("Mary",33));
        set.add(new User("Jack",33));
        set.add(new User("Jack",56));


        Iterator iterator = set.iterator();
        while(iterator.hasNext()){
            System.out.println(iterator.next());
        }
    }

}
package java1;

/**
 *
 */
public class User implements Comparable{
    private String name;
    private int age;

    public User() {
    }

    public User(String name, int age) {
        this.name = name;
        this.age = age;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public int getAge() {
        return age;
    }

    public void setAge(int age) {
        this.age = age;
    }

    @Override
    public String toString() {
        return "User{" +
                "name='" + name + '\'' +
                ", age=" + age +
                '}';
    }

    @Override
    public boolean equals(Object o) {
        System.out.println("User equals()....");
        if (this == o) return true;
        if (o == null || getClass() != o.getClass()) return false;

        User user = (User) o;

        if (age != user.age) return false;
        return name != null ? name.equals(user.name) : user.name == null;
    }

    @Override
    public int hashCode() { //return name.hashCode() + age;
        int result = name != null ? name.hashCode() : 0;
        result = 31 * result + age;
        return result;
    }

    //按照姓名从大到小排列,年龄从小到大排列
    @Override
    public int compareTo(Object o) {
        if(o instanceof User){
            User user = (User)o;
//            return -this.name.compareTo(user.name);
            int compare = -this.name.compareTo(user.name);
            if(compare != 0){
                return compare;
            }else{
                return Integer.compare(this.age,user.age);
            }
        }else{
            throw new RuntimeException("输入的类型不匹配");
        }

    }
}

 Collection接口的子接口之一——Map接口 

Map接口的框架图:


Map接口的底层原理 

一、Map的实现类的结构:
*  |----Map:双列数据,存储key-value对的数据   ---类似于高中的函数:y = f(x)
*         |----HashMap:作为Map的主要实现类;线程不安全的,效率高;存储null的key和value
*              |----LinkedHashMap:保证在遍历map元素时,可以按照添加的顺序实现遍历。
*                      原因:在原有的HashMap底层结构基础上,添加了一对指针,指向前一个和后一个元素。
*                      对于频繁的遍历操作,此类执行效率高于HashMap。
*         |----TreeMap:保证按照添加的key-value对进行排序,实现排序遍历。此时考虑key的自然排序或定制排序
*                      底层使用红黑树
*         |----Hashtable:作为古老的实现类;线程安全的,效率低;不能存储null的key和value
*              |----Properties:常用来处理配置文件。key和value都是String类型
*
*      HashMap的底层:数组+链表  (jdk7及之前)
*                    数组+链表+红黑树 (jdk 8)
二、Map结构的理解:
*    Map中的key:无序的、不可重复的使用Set存储所有的key  ---> key所在的类要重写equals()和hashCode() (以HashMap为例)
*    Map中的value:无序的、可重复的,使用Collection存储所有的value --->value所在的类要重写equals()
*    一个键值对:key-value构成了一个Entry对象。
*    Map中的entry:无序的、不可重复的,使用Set存储所有的entry

HashMap的底层实现原理
以jdk7为例说明:
*      HashMap map = new HashMap():
*      在实例化以后,底层创建了长度是16的一维数组Entry[] table。
*      ...可能已经执行过多次put...
*      map.put(key1,value1):
*      首先,调用key1所在类的hashCode()计算key1哈希值,此哈希值经过某种算法计算以后,得到在Entry数组中的存放位置。
*      如果此位置上的数据为空,此时的key1-value1添加成功。 ----情况1
*      如果此位置上的数据不为空,(意味着此位置上存在一个或多个数据(以链表形式存在)),比较key1和已经存在的一个或多个数据的哈希值:
*              如果key1的哈希值与已经存在的数据的哈希值都不相同,此时key1-value1添加成功。----情况2
*              如果key1的哈希值和已经存在的某一个数据(key2-value2)的哈希值相同,继续比较:调用key1所在类的equals(key2)方法,比较:
*                      如果equals()返回false:此时key1-value1添加成功。----情况3
*                      如果equals()返回true:使用value1替换value2。
*
*       补充:关于情况2和情况3:此时key1-value1和原来的数据以链表的方式存储。
*
*      在不断的添加过程中,会涉及到扩容问题,当超出临界值(且要存放的位置非空)时,扩容。默认的扩容方式:扩容为原来容量的2倍,并将原有的数据复制过来。
*
*      jdk8 相较于jdk7在底层实现方面的不同:
*      1. new HashMap():底层没有创建一个长度为16的数组
*      2. jdk 8底层的数组是:Node[],而非Entry[]
*      3. 首次调用put()方法时,底层创建长度为16的数组
*      4. jdk7底层结构只有:数组+链表。jdk8中底层结构:数组+链表+红黑树。
*         4.1 形成链表时,七上八下(jdk7:新的元素指向旧的元素。jdk8:旧的元素指向新的元素)
          4.2 当数组的某一个索引位置上的元素以链表形式存在的数据个数 > 8 且当前数组的长度 > 64时,此时此索引位置上的所数据改为使用红黑树存储。
*
*      DEFAULT_INITIAL_CAPACITY : HashMap的默认容量,16
*      DEFAULT_LOAD_FACTOR:HashMap的默认加载因子:0.75
*      threshold:扩容的临界值,=容量*填充因子:16 * 0.75 => 12
*      TREEIFY_THRESHOLD:Bucket中链表长度大于该默认值,转化为红黑树:8
*      MIN_TREEIFY_CAPACITY:桶中的Node被树化时最小的hash表容量:64

LinkedHashMap的底层实现原理(了解)
*      源码中:
*      static class Entry<K,V> extends HashMap.Node<K,V> {
            Entry<K,V> before, after;//能够记录添加的元素的先后顺序
            Entry(int hash, K key, V value, Node<K,V> next) {
               super(hash, key, value, next);
            }
        }

Map中定义的方法(代码)

1.添加、删除、修改操作:

Object put(Object key,Object value):将指定key-value添加到(或修改)当前map对象中

void putAll(Map m):将m中的所有key-value对存放到当前map中

Object remove(Object key):移除指定key的key-value对,并返回value

void clear():清空当前map中的所有数据

2.元素查询的操作:

Object get(Object key):获取指定key对应的value

boolean containsKey(Object key):是否包含指定的key

boolean containsValue(Object value):是否包含指定的value

int size():返回map中key-value对的个数

boolean isEmpty():判断当前map是否为空

boolean equals(Object obj):判断当前map和参数对象obj是否相等

3.元视图操作的方法:

Set keySet():返回所有key构成的Set集合

Collection values():返回所有value构成的Collection集合

Set entrySet():返回所有key-value对构成的Set集合

总结(常用方法):

添加:put(Object key,Object value)

删除:remove(Object key)

修改:put(Object key,Object value)

查询:get(Object key)

长度:size()

遍历:keySet() / values() / entrySet()

//顺序为test1/2/3/4/5,从下往上看
public class MapTest {

    /*
 元视图操作的方法:
 Set keySet():返回所有key构成的Set集合
 Collection values():返回所有value构成的Collection集合
 Set entrySet():返回所有key-value对构成的Set集合

     */


    @Test
    public void test5(){
        Map map = new HashMap();
        map.put("AA",123);
        map.put(45,1234);
        map.put("BB",56);

        //遍历所有的key集:keySet()
        Set set = map.keySet();
            Iterator iterator = set.iterator();
            while(iterator.hasNext()){
                System.out.println(iterator.next());
        }
        System.out.println();
        //遍历所有的value集:values()
        Collection values = map.values();
        for(Object obj : values){
            System.out.println(obj);
        }
        System.out.println();
        //遍历所有的key-value
        //方式一:entrySet()
        Set entrySet = map.entrySet();
        Iterator iterator1 = entrySet.iterator();
        while (iterator1.hasNext()){
            Object obj = iterator1.next();
            //entrySet集合中的元素都是entry
            Map.Entry entry = (Map.Entry) obj;
            System.out.println(entry.getKey() + "---->" + entry.getValue());

        }
        System.out.println();
        //方式二:
        Set keySet = map.keySet();
        Iterator iterator2 = keySet.iterator();
        while(iterator2.hasNext()){
            Object key = iterator2.next();
            Object value = map.get(key);
            System.out.println(key + "=====" + value);

        }

    }


    /*
 元素查询的操作:
 Object get(Object key):获取指定key对应的value
 boolean containsKey(Object key):是否包含指定的key
 boolean containsValue(Object value):是否包含指定的value
 int size():返回map中key-value对的个数
 boolean isEmpty():判断当前map是否为空
 boolean equals(Object obj):判断当前map和参数对象obj是否相等
     */
    @Test
    public void test4(){
        Map map = new HashMap();
        map.put("AA",123);
        map.put(45,123);
        map.put("BB",56);
        // Object get(Object key)
        System.out.println(map.get(45));
        //containsKey(Object key)
        boolean isExist = map.containsKey("BB");
        System.out.println(isExist);

        isExist = map.containsValue(123);
        System.out.println(isExist);

        map.clear();

        System.out.println(map.isEmpty());

    }

    /*
     添加、删除、修改操作:
 Object put(Object key,Object value):将指定key-value添加到(或修改)当前map对象中
 void putAll(Map m):将m中的所有key-value对存放到当前map中
 Object remove(Object key):移除指定key的key-value对,并返回value
 void clear():清空当前map中的所有数据
     */
    @Test
    public void test3(){
        Map map = new HashMap();
        //添加
        map.put("AA",123);
        map.put(45,123);
        map.put("BB",56);
        //修改
        map.put("AA",87);

        System.out.println(map);

        Map map1 = new HashMap();
        map1.put("CC",123);
        map1.put("DD",123);

        map.putAll(map1);

        System.out.println(map);

        //remove(Object key)
        Object value = map.remove("CC");
        System.out.println(value);
        System.out.println(map);

        //clear()
        map.clear();//与map = null操作不同
        System.out.println(map.size());
        System.out.println(map);
    }

    @Test
    public void test2(){
        Map map = new HashMap();
        map = new LinkedHashMap();
        map.put(123,"AA");
        map.put(345,"BB");
        map.put(12,"CC");

        System.out.println(map);
    }


    @Test
    public void test1(){
        Map map = new HashMap();
//        map = new Hashtable();
        map.put(null,123);

    }
}

Propertise处理属性文件

package javaDemo;

import java.io.FileInputStream;
import java.io.IOException;
import java.util.Properties;


public class PropertiesTest {

    //Properties:常用来处理配置文件。key和value都是String类型
    public static void main(String[] args)  {
        FileInputStream fis = null;
        try {
            Properties pros = new Properties();

            fis = new FileInputStream("jdbc.properties");
            pros.load(fis);//加载流对应的文件

            String name = pros.getProperty("name");
            String password = pros.getProperty("password");

            System.out.println("name = " + name + ", password = " + password);
        } catch (IOException e) {
            e.printStackTrace();
        } finally {
            if(fis != null){
                try {
                    fis.close();
                } catch (IOException e) {
                    e.printStackTrace();
                }

            }
        }

    }
}

Collections工具类的使用

Collections是操作Set、List和Map等集合的工具类。它提供了一系列静态方法对集合元素进行排序、查询和修改等操作,还提供了对集合对象设置不可变、对集合对象实现同步控制等方法。

Collections工具类如何使用?

package javaDemo;

import org.junit.Test;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;

/**
 * Collections:操作Collection、Map的工具类
 *
 */
public class CollectionsTest {

/*
reverse(List):反转 List 中元素的顺序
shuffle(List):对 List 集合元素进行随机排序
sort(List):根据元素的自然顺序对指定 List 集合元素按升序排序
sort(List,Comparator):根据指定的 Comparator 产生的顺序对 List 集合元素进行排序
swap(List,int, int):将指定 list 集合中的 i 处元素和 j 处元素进行交换

Object max(Collection):根据元素的自然顺序,返回给定集合中的最大元素
Object max(Collection,Comparator):根据 Comparator 指定的顺序,返回给定集合中的最大元素
Object min(Collection)
Object min(Collection,Comparator)
int frequency(Collection,Object):返回指定集合中指定元素的出现次数
void copy(List dest,List src):将src中的内容复制到dest中
boolean replaceAll(List list,Object oldVal,Object newVal):使用新值替换 List 对象的所有旧值

 */
    @Test
    public void test2(){
        List list = new ArrayList();
        list.add(123);
        list.add(43);
        list.add(765);
        list.add(-97);
        list.add(0);

        //报异常:IndexOutOfBoundsException("Source does not fit in dest")
//        List dest = new ArrayList();
//        Collections.copy(dest,list);
        //正确的:
        List dest = Arrays.asList(new Object[list.size()]);
        System.out.println(dest.size());//list.size();
        Collections.copy(dest,list);

        System.out.println(dest);


        /*
        Collections 类中提供了多个 synchronizedXxx() 方法,
        该方法可使将指定集合包装成线程同步的集合,从而可以解决
        多线程并发访问集合时的线程安全问题

         */
        //返回的list1即为线程安全的List
        List list1 = Collections.synchronizedList(list);


    }

    @Test
    public void test1(){
        List list = new ArrayList();
        list.add(123);
        list.add(43);
        list.add(765);
        list.add(765);
        list.add(765);
        list.add(-97);
        list.add(0);

        System.out.println(list);

//        Collections.reverse(list);
//        Collections.shuffle(list);
//        Collections.sort(list);
//        Collections.swap(list,1,2);
        int frequency = Collections.frequency(list, 123);

        System.out.println(list);
        System.out.println(frequency);

    }

}

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值