多目标优化

定义

          多目标优化(Multi-Objective Optimization)是运筹学和决策科学中的一个重要分支,涉及同时优化多个相互冲突的目标。多目标优化是多准则决策的一个领域,它是涉及多个目标函数同时优化的数学问题。多目标优化已经应用于许多科学领域,包括工程、经济和物流,其中需要在两个或多个相互冲突的目标之间进行权衡的情况下作出最优决策。分别涉及两个和三个目标的多目标优化问题的例子有:在购买汽车时降低成本,同时使舒适性最大化;在使车辆的燃料消耗和污染物排放最小化的同时将性能最大化。在实际问题中,甚至可以有三多个目标。

多目标优化的发展历史

          多目标优化的发展历程中,1906年Pareto提出了多目标优化的核心思想【Pareto, V. (1906). Manuale di economia politica (Vol. 13). Societa Editrice】。1979年Stadler对Pareto最优进行了进一步回顾,系统地梳理了多目标优化的发展【Stadler, W. (1979). A survey of multicriteria optimization or the vector maximum problem, part I: 1776–1960. Journal of Optimization Theory and Applications, 29(1), 1-52】。2008年Miettinen等人提出了一种混合方法来解决多目标问题,并引入了互动方法【Miettinen, K., Ruiz, F., & Wierzbicki, A. P. (2008). Introduction to multiobjective optimization: interactive approaches. In Multiobjective Optimization (pp. 27-57). Springer, Berlin, Heidelberg】。2014年Deb对多目标优化领域进行了全面回顾,介绍了其发展和应用【Deb, K. (2014). Multi-objective optimization. In Search methodologies (pp. 403-449). Springer, Boston, MA】。2018年Sener和Koltun提出将多任务学习作为多目标优化的一种策略,进一步拓展了多目标优化的应用范围【Sener, O., & Koltun, V. (2018). Multi-task learning as multi-objective optimization. In Advances in Neural Information Processing Systems (pp. 524-535)】。

多目标优化算法分类

          多目标优化算法归结起来有传统优化算法和智能优化算法两大类

          传统优化算法包括加权法、约束法和线性规划法等,实质上就是将多目标函数转化为单目标函数,通过采用单目标优化的方法达到对多目标函数的求解。

          智能优化算法包括进化算法(Evolutionary Algorithm, 简称EA)、粒子群算法(Particle Swarm Optimization, PSO)等。从九十年代初开始,进化算法系列算法被统一,如遗传算法等。

K. Miettinen, Nonlinear Multiobjective Optimization. Norwell, A:Kluwer, 1999. Problems with multiple objectives and criteria are generally known as multiple criteria optimization or multiple criteria decision-making (MCDM) problems. So far, these types of problems have typically been modelled and solved by means of linear programming. However, many real-life phenomena are of a nonlinear nature, which is why we need tools for nonlinear programming capable of handling several conflicting or incommensurable objectives. In this case, methods of traditional single objective optimization and linear programming are not enough; we need new ways of thinking, new concepts, and new methods - nonlinear multiobjective optimization. Nonlinear Multiobjective Optimization provides an extensive, up-to-date, self-contained and consistent survey, review of the literature and of the state of the art on nonlinear (deterministic) multiobjective optimization, its methods, its theory and its background. The amount of literature on multiobjective optimization is immense. The treatment in this book is based on approximately 1500 publications in English printed mainly after the year 1980. Problems related to real-life applications often contain irregularities and nonsmoothnesses. The treatment of nondifferentiable multiobjective optimization in the literature is rather rare. For this reason, this book contains material about the possibilities, background, theory and methods of nondifferentiable multiobjective optimization as well. This book is intended for both researchers and students in the areas of (applied) mathematics, engineering, economics, operations research and management science; it is meant for both professionals and practitioners in many different fields of application. The intention has been to provide a consistent summary that may help in selecting an appropriate method for the problem to be solved. It is hoped the extensive bibliography will be of value to researchers.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值