linux arp 命令学习

学习arp命令先学习一下arp协议(强烈建议学习一下):https://blog.youkuaiyun.com/qq_983030560/article/details/128754934

使用man arp 可以查看对arp命令的描述

Arp操作或显示内核的IPv4网络邻居缓存。它可以向表中添加条目、删除条目或显示当前内容。

ARP代表地址解析协议,用于查找给定IPv4的网络邻居的媒体访问控制地址
地址。

使用方式

arp [-vn] [-H type] [-i if] [-ae] [hostname]

       arp [-v] [-i if] -d hostname [pub]

       arp [-v] [-H type] [-i if] -s hostname hw_addr [temp]

       arp [-v] [-H type] [-i if] -s hostname hw_addr [netmask nm] pub

       arp [-v] [-H type] [-i if] -Ds hostname ifname [netmask nm] pub

       arp [-vnD] [-H type] [-i if] -f [filename]

参数介绍

-a                       显示所有主机对应得arp解析(BSD风格)
-e                       显示所有主机对应得arp解析(linux默认风格)
-s, --set                配置新的ARP表项
-d, --delete             删除指定条目
-v, --verbose            显示信息得信息
-n, --numeric            不解析名称
-i, --device             指定网络接口(例如eth0)
-D, --use-device         从给定设备读取<hwaddr>
-A, -p, --protocol       指定协议族
-f, --file               从文件或/etc/ethers中读取新条目

示例演示

a. 添加静态ARP表项:

[root@bogon ~]# arp -s 192.168.0.199 00:0c:29:2b:ef:76
[root@bogon ~]# arp -a
bogon (192.168.0.2) at 00:50:56:e0:21:8c [ether] on ens38
bogon (192.168.0.1) at 00:50:56:c0:00:08 [ether] on ens38
bogon (192.168.0.199) at 00:0c:29:2b:ef:76 [ether] PERM on ens38
bogon (192.168.0.161) at 00:0c:29:47:91:76 [ether] on ens38

b. 删除ARP表项:

[root@bogon ~]# arp -d 192.168.0.199
[root@bogon ~]# arp -a
bogon (192.168.0.2) at 00:50:56:e0:21:8c [ether] on ens38
bogon (192.168.0.1) at 00:50:56:c0:00:08 [ether] on ens38
bogon (192.168.0.161) at 00:0c:29:47:91:76 [ether] on ens38
### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值