一、持久化概念
(1)什么是持久化
利用永久性存储介质将数据进行保存,在特定的时间将保存的数据进行恢复的工作机制称为持久化 。持久化用于防止数据的意外丢失,确保数据安全性
(2)持久化过程保存什么?
计算机中的数据全部都是二进制,如果现在我要你给我保存一组数据的话,你有什么样的方式呢,其实最简单的就是现在长什么样,我就记下来就行了,那么这种是记录纯粹的数据,也叫做快照存储,也就是它保存的是某一时刻的数据状态。
还有一种形式,它不记录你的数据,它记录你所有的操作过程,比如说大家用idea的时候,有没有遇到过写错了ctrl+z撤销,然后ctrl+y还能恢复,这个地方它也是在记录,但是记录的是你所有的操作过程,那我想问一下,操作过程,我都给你留下来了,你说数据还会丢吗?肯定不会丢,因为你所有的操作过程我都保存了。这种保存操作过程的存储,用专业术语来说可以说是日志。
二、RDB(快照)
1、save指令
手动执行一次保存操作
save
2、save指令相关配置
设置本地数据库文件名,默认值为 dump.rdb,通常设置为dump-端口号.rdb
dbfilename filename
设置存储.rdb文件的路径,通常设置成存储空间较大的目录中,目录名称data
dir path
设置存储至本地数据库时是否压缩数据,默认yes,设置为no,节省 CPU 运行时间,但存储文件变大
rdbcompression yes|no
设置读写文件过程是否进行RDB格式校验,默认yes,设置为no,节约读写10%时间消耗,单存在数据损坏的风险
rdbchecksum yes|no
3、 save指令工作原理
redis是个单线程的工作模式,它会创建一个任务队列,所有的命令都会进到这个队列里边,在这儿排队执行,执行完一个消失一个,当所有的命令都执行完了,OK,结果达到了。
但是如果现在我们执行的时候save指令保存的数据量很大会是什么现象呢?
他会非常耗时,以至于影响到它在执行的时候,后面的指令都要等,所以说这种模式是不友好的,这是save指令对应的一个问题,当cpu执行的时候会阻塞redis服务器,直到他执行完毕,所以不建议大家在线上环境用save指令。
4、bgsave指令
当save指令的数据量过大时,单线程执行方式造成效率过低,那应该如何处理?
此时我们可以使用:bgsave指令,bg其实是background的意思,后台执行的意思
手动启动后台保存操作,但不是立即执行
bgsave
bgsave指令相关配置
后台存储过程中如果出现错误现象,是否停止保存操作,默认yes
stop-writes-on-bgsave-error yes|no
其他
dbfilename filename
dir path
rdbcompression yes|no
rdbchecksum yes|no
5、 bgsave指令工作原理
当执行bgsave的时候,客户端发出bgsave指令给到redis服务器。注意,这个时候服务器马上回一个结果告诉客户端后台已经开始了,与此同时它会创建一个子进程,使用Linux的fork函数创建一个子进程,让这个子进程去执行save相关的操作,此时我们可以想一下,我们主进程一直在处理指令,而子进程在执行后台的保存,它会不会干扰到主进程的执行吗?
答案是不会,所以说他才是主流方案。子进程开始执行之后,它就会创建RDB文件把它存起来,操作完以后他会把这个结果返回,也就是说bgsave的过程分成两个过程,第一个是服务端拿到指令直接告诉客户端开始执行了;另外一个过程是一个子进程在完成后台的保存操作,操作完以后回一个消息。
6、 save配置自动执行
设置自动持久化的条件,满足限定时间范围内key的变化数量达到指定数量即进行持久化
save second changes
参数
second:监控时间范围
changes:监控key的变化量
示例:
save 900 1
save 300 10
save 60 10000
7、RDB三种启动方式对比
方式 | save指令 | bgsave指令 |
读写 | 同步 | 异步 |
阻塞客户端指令 | 是 | 否 |
额外内存消耗 | 否 | 是 |
启动新进程 | 否 | 是 |
总结
RDB优点:
RDB是一个紧凑压缩的二进制文件,存储效率较高
RDB内部存储的是redis在某个时间点的数据快照,非常适合用于数据备份,全量复制等场景
RDB恢复数据的速度要比AOF快很多
应用:服务器中每X小时执行bgsave备份,并将RDB文件拷贝到远程机器中,用于灾难恢复。
RDB缺点
RDB方式无论是执行指令还是利用配置,无法做到实时持久化,具有较大的可能性丢失数据
bgsave指令每次运行要执行fork操作创建子进程,要牺牲掉一些性能
Redis的众多版本中未进行RDB文件格式的版本统一,有可能出现各版本服务之间数据格式无法兼容现象