【人工智能 | 机器学习】神经网络


1. 神经元模型

神经网络:具有适应性的 简单单元(神经元)组成的广泛并行互连的网络,其组织能够模拟生物神经系统对真实世界物体作出的交互反应

M-P神经元模型:每个神经元与其他神经元相连。当神经元接收到来自 n 个其他神经元传递过来的 输入信号 ,信号通过 带权重的连接 进行传递,神经元接收到的总输入值与神经元的 阈值 进行比较,通过 激活函数 处理神经元输出
在这里插入图片描述

a 为理想激活函数。将输入值映射为输出值 0 或 1,0 对应神经元抑制,1 对应兴奋。
阶路函数不连续、不光滑,因此常用 Sigmoid 函数 作为激活函数。
b 为典型的 Sigmoid 函数,把可能在较大范围内变化的输入值挤压到(0,1)输出范围内,因此也称为 挤压函数
将许多个这样的神经元按一定层次结构连接,得到神经网络
在这里插入图片描述


2. 感知机与多层网络

感知机 (Perceptron):也称 阈值逻辑单元 (threshold logic unit)。由两层神经元组成。输入层接收外界输入信号后传递给输出层,输出层是 M-P神经元
在这里插入图片描述在这里插入图片描述

x1,x2 可能是上一层神经元传递过来的,也可能是从数据集中获取的。取值范围为 0到1。由 Sigmoid 函数可知
y = 1 ← Σ i w i x i − θ ≥ 0 y = 0 ← Σ i w i x i − θ ≤ 0 y = 1 \leftarrow \Sigma_iw_ix_i-\theta \geq 0 \newline y = 0 \leftarrow \Sigma_iw_ix_i-\theta \leq 0 y=1Σiw

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

竹一笔记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值