深度优先是指要一条路走到黑,遍历具有后来先服务的特性,适合用递归。
算法步骤:
1、建立bool类型访问结点标记数组,并初始化所有元素为false,代表每个结点都没有被访问;
2、以图中的的一个结点为原点v,访问v并在访问标记数组中标记已访问;
3、遍历v的所有邻接点,若有未访问,递归。
代码实现:
#include <iostream>
using namespace std;
#define maxn 10
bool visited[maxn];
using VexType = char;
class AMGragh
{
public:
VexType vex[maxn];
int edge[maxn][maxn];
int vex_num, edge_num;
};
int LocateVex(const AMGragh& g, const VexType& v)
{
for (int i = 0; i < g.vex_num; i++)
{
if (v == g.vex[i])
{
return i;
}
}
return -1;
}
void CreateAMGraph(AMGragh& g)
{
memset(g.vex, 0, sizeof(g.vex));
memset(g.edge, 0, sizeof(g.edge));
VexType u, v;
int loc_u, loc_v;
cout << "请输入顶点数:" << endl;
cin >> g.vex_num;
cout << "请输入边数:" << endl;
cin >> g.edge_num;
cout << "请依次输入结点:" << endl;
for (int i = 0; i < g.vex_num; i++)
{
cin >> g.vex[i];
}
cout << "请依次输入边的两个顶点:" << endl;
for (int i = 0; i < g.edge_num;i++)
{
cin >> u >> v;
loc_u = LocateVex(g, u);
loc_v = LocateVex(g, v);
g.edge[loc_u][loc_v] = g.edge[loc_v][loc_u] = 1;
}
}
//void OutputAMGragh(const AMGragh& g)
//{
// for (int i = 0; i < g.vex_num; i++)
// {
// for (int j = 0; j < g.vex_num; j++)
// {
// cout << g.edge[i][j] << " ";
// }
// cout << endl;
// }
//}
void DFS(const AMGragh g, const int& v)
{
cout << g.vex[v] << " ";
visited[v] = true;
for (int i = 0; i < g.vex_num; i++)
{
if (g.edge[v][i] && !visited[i])
{
DFS(g, i);
}
}
}
int main()
{
VexType start_vex;
AMGragh g;
CreateAMGraph(g);
//OutputAMGragh(g);
cout << "请输入要开始深度优先遍历的首个结点:" << endl;
cin >> start_vex;
int str = LocateVex(g, start_vex);
DFS(g, str);
return 0;
}