
pytorch
corc++
这个作者很懒,什么都没留下…
展开
-
dataset读取方式二
import torchvision.datasets as datasets from torchvision import transforms,utils from torch.utils.data import dataloader,DataLoader trans = transforms.Compose([transforms.ToTensor(),transforms.Resize((48,48))]) data = datasets.ImageFolder(root=r'E:\pyth原创 2022-05-04 21:03:45 · 135 阅读 · 0 评论 -
dataset图像加载和显示
在这里插入代码 ################dataset1111111######################### import torch import os from torch.utils.data import Dataset ,DataLoader from torch import nn as nn from torchvision import transforms import numpy as np from PIL import Image import cv2 c原创 2022-05-04 20:39:01 · 273 阅读 · 0 评论 -
dataset数据集读取 ----1
class Mydataset(Dataset): def __init__(self,fliepatch ,lablespatch ,transfrom =None ): self.trans = transfrom self.images = [] self.classes = [] subist= os.listdir(fliepatch) for i in subist: self.原创 2022-05-04 16:35:56 · 569 阅读 · 0 评论 -
torch.cat()函数 dim = 2 和 -1 时关于第三维度的拼接。不理解的可问
import torch c = torch.randn((2,3,4)) d = torch.randn((2,3,4)) print(c,d) print(c.shape,d.shape) print(torch.cat((c,d),dim=0)) print(torch.cat((c,d),dim=1)) print(torch.cat((c,d),dim=2)) m = torch.cat((c,d),dim=0) n = torch.cat((c,d),dim=1) l = torch.cat(原创 2022-03-29 14:39:07 · 4077 阅读 · 1 评论 -
vgg-16自复现
```python import torch import torch.nn as nn import torch.nn.functional as F class conv1(nn.Module): def __init__(self , inchannel ,outchannel): super(conv1, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(in_cha.原创 2022-03-13 18:33:20 · 187 阅读 · 0 评论 -
inception-v1 自复现 有问题尽管问
代码: import torch import torch.nn as nn import torch.nn.functional as F class inceptionModuleV1(nn.Module): def __init__(self,inputs, outputs1 , outputs2 ,outputs3 ,outputs4 ,outputs5 ,outputs6): super(inceptionModuleV1,self).__init__()原创 2022-03-13 10:30:01 · 111 阅读 · 0 评论 -
自复现的alexnet模型,学习记录,有疑问请指出
```python import torch import torch.nn as nn import torch.nn.functional as F class ALX(nn.Module): def __init__(self): self.conv1 = nn.Conv2d(in_channels=3 ,out_channels= 96 ,kernel_size= 11 ,stride= 4 ,padding= 0) self.maxpool =.原创 2022-03-10 18:40:19 · 193 阅读 · 0 评论 -
AI-openpose,肢体识别,预训练模型,mobilenet_sgd_68.848.pth.tar
我就不上传csdn了,下载需要花钱。有需要的可以私信我。原创 2022-03-03 10:16:46 · 751 阅读 · 46 评论 -
Rnn ,沐神
这里 我就直接上代码了 ,因为沐神的是分开的 ,我调试放到了一起,` import torch import random import zipfile from acem.utils import * device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(torch.__version__) print(device) # # with zipfile.ZipFile('./jaychou_lyrics.t原创 2021-11-30 19:31:59 · 196 阅读 · 0 评论 -
2021-10-18
import torch x_da = [1.0,2.0,3.0] y_da = [2.0,4.0,6.0] w = torch.Tensor([1.0]) w.requires_grad = True def forward(x): return w * x def loss(x , y): return (forward(x) - y)**2 epoc = [] costs = [] for epo in range(100): for xs, ys in z..原创 2021-10-18 16:01:22 · 117 阅读 · 0 评论 -
mnist识别模型生成,加识别代码。
import torch from torchvision import transforms from torchvision import datasets from torch.utils.data import DataLoader import torch.nn.functional as F #relu import torch.optim as optim batch_size = 64 transform = transforms.Compose([transforms.ToTen原创 2021-10-15 23:28:50 · 121 阅读 · 0 评论 -
pytorch Tensor和tensor张量变换差异----Found dtype Long but expected Float:刘二
import torch x_data = torch.tensor([[1.0],[2.0],[3.0]]) y_data = torch.tensor([[5.0],[6.0],[7.0]]) class LinerModel(torch.nn.Module): def __init__(self): super(LinerModel,self).__init__() self.lin = torch.nn.Linear(1,1) def fo原创 2021-10-14 13:53:40 · 509 阅读 · 0 评论 -
pytorch线性模型 刘二
代码如下: import torch x_data = torch.tensor([[1.0],[2.0],[3.0]]) y_data = torch.tensor([[2.0],[4.0],[6.0]]) class Linear(torch .nn.Module): def __init__(self): super(Linear,self).__init__() self.linear = torch.nn.Linear(1,1)原创 2021-10-14 00:20:39 · 78 阅读 · 0 评论 -
2021-10-13
PyTorch反向传播学习实例(p4)刘二 import torch x_da = [1.0,2.0,3.0] y_da = [2.0,4.0,6.0] w1 = torch.tensor([1.0]) w1.requires_grad= True w2= torch.tensor([1.0]) w2.requires_grad=True b = torch.tensor([1.0]) b.requires_grad=True def dors(x): return w1 *x *x + w原创 2021-10-13 09:43:36 · 92 阅读 · 1 评论