完整模型训练套路

  1. 保存每一轮的参数
import torchvision
import torch
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

# from model import * 相当于把 model中的所有内容写到这里,这里直接把 model 写在这里
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()        
        self.model1 = nn.Sequential(
            nn.Conv2d(3,32,5,1,2),  # 输入通道3,输出通道32,卷积核尺寸5×5,步长1,填充2    
            nn.MaxPool2d(2),
            nn.Conv2d(32,32,5,1,2),
            nn.MaxPool2d(2),
            nn.Conv2d(32,64,5,1,2),
            nn.MaxPool2d(2),
            nn.Flatten(),  # 展平后变成 64*4*4 了
            nn.Linear(64*4*4,64),
            nn.Linear(64,10)
        )
        
    def forward(self, x):
        x = self.model1(x)
        return x

# 准备数据集
train_data = torchvision.datasets.CIFAR10("./dataset",train=True,transform=torchvision.transforms.ToTensor(),download=True)       
test_data = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)       

# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data_size=10,则打印:训练数据集的长度为:10
print("训练数据集的长度:{}".format(train_data_size))
print("测试数据集的长度:{}".format(test_data_size))

# 利用 Dataloader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)        
test_dataloader = DataLoader(test_data, batch_size=64)

# 创建网络模型
tudui = Tudui() 

# 损失函数
loss_fn = nn.CrossEntropyLoss() # 交叉熵,fn 是 fuction 的缩写

# 优化器
learning = 0.01  # 1e-2 就是 0.01 的意思
optimizer = torch.optim.SGD(tudui.parameters(),learning)   # 随机梯度下降优化器  

# 设置网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0

# 训练的轮次
epoch = 10

# 添加 tensorboard
writer = SummaryWriter("logs")

for i in range(epoch):
    print("-----第 {} 轮训练开始-----".format(i+1))
    
    # 训练步骤开始
    for data in train_dataloader:
        imgs, targets = data
        outputs = tudui(imgs)
        loss = loss_fn(outputs, targets) # 计算实际输出与目标输出的差距
        
        # 优化器对模型调优
        optimizer.zero_grad()  # 梯度清零
        loss.backward() # 反向传播,计算损失函数的梯度
        optimizer.step()   # 根据梯度,对网络的参数进行调优
        
        total_train_step = total_train_step + 1
        if total_train_step % 100 == 0:
            print("训练次数:{},Loss:{}".format(total_train_step,loss.item()))  # 方式二:获得loss值
            writer.add_scalar("train_loss",loss.item(),total_train_step)
    
    # 测试步骤开始(每一轮训练后都查看在测试数据集上的loss情况)
    total_test_loss = 0
    with torch.no_grad():  # 没有梯度了
        for data in test_dataloader: # 测试数据集提取数据
            imgs, targets = data
            outputs = tudui(imgs)
            loss = loss_fn(outputs, targets) # 仅data数据在网络模型上的损失
            total_test_loss = total_test_loss + loss.item() # 所有loss
    print("整体测试集上的Loss:{}".format(total_test_loss))
    writer.add_scalar("test_loss",total_test_loss,total_test_step)
    total_test_step = total_test_step + 1
    
    torch.save(tudui, "./model/tudui_{}.pth".format(i)) # 保存每一轮训练后的结果
    print("模型已保存")
    
writer.close()
  1. argmax 的作用
mport torch
outputs = torch.tensor([[0.1,0.2],
                        [0.05,0.4]])
print(outputs.argmax(0))  # 竖着看,最大值的索引
print(outputs.argmax(1))  # 横着看,最大值的索引
preds = outputs.argmax(0)
targets = torch.tensor([0,1])
print((preds == targets).sum()) # 对应位置相等的个数
  1. 打印正确率
import torchvision
import torch
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

# from model import * 相当于把 model中的所有内容写到这里,这里直接把 model 写在这里
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()        
        self.model1 = nn.Sequential(
            nn.Conv2d(3,32,5,1,2),  # 输入通道3,输出通道32,卷积核尺寸5×5,步长1,填充2    
            nn.MaxPool2d(2),
            nn.Conv2d(32,32,5,1,2),
            nn.MaxPool2d(2),
            nn.Conv2d(32,64,5,1,2),
            nn.MaxPool2d(2),
            nn.Flatten(),  # 展平后变成 64*4*4 了
            nn.Linear(64*4*4,64),
            nn.Linear(64,10)
        )
        
    def forward(self, x):
        x = self.model1(x)
        return x

# 准备数据集
train_data = torchvision.datasets.CIFAR10("./dataset",train=True,transform=torchvision.transforms.ToTensor(),download=True)       
test_data = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)       

# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data_size=10,则打印:训练数据集的长度为:10
print("训练数据集的长度:{}".format(train_data_size))
print("测试数据集的长度:{}".format(test_data_size))

# 利用 Dataloader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)        
test_dataloader = DataLoader(test_data, batch_size=64)

# 创建网络模型
tudui = Tudui() 

# 损失函数
loss_fn = nn.CrossEntropyLoss() # 交叉熵,fn 是 fuction 的缩写

# 优化器
learning = 0.01  # 1e-2 就是 0.01 的意思
optimizer = torch.optim.SGD(tudui.parameters(),learning)   # 随机梯度下降优化器  

# 设置网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0

# 训练的轮次
epoch = 10

# 添加 tensorboard
writer = SummaryWriter("logs")

for i in range(epoch):
    print("-----第 {} 轮训练开始-----".format(i+1))
    
    # 训练步骤开始
    for data in train_dataloader:
        imgs, targets = data
        outputs = tudui(imgs)
        loss = loss_fn(outputs, targets) # 计算实际输出与目标输出的差距
        
        # 优化器对模型调优
        optimizer.zero_grad()  # 梯度清零
        loss.backward() # 反向传播,计算损失函数的梯度
        optimizer.step()   # 根据梯度,对网络的参数进行调优
        
        total_train_step = total_train_step + 1
        if total_train_step % 100 == 0:
            print("训练次数:{},Loss:{}".format(total_train_step,loss.item()))  # 方式二:获得loss值
            writer.add_scalar("train_loss",loss.item(),total_train_step)
    
    # 测试步骤开始(每一轮训练后都查看在测试数据集上的loss情况)
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():  # 没有梯度了
        for data in test_dataloader: # 测试数据集提取数据
            imgs, targets = data
            outputs = tudui(imgs)
            loss = loss_fn(outputs, targets) # 仅data数据在网络模型上的损失
            total_test_loss = total_test_loss + loss.item() # 所有loss
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy
            
    print("整体测试集上的Loss:{}".format(total_test_loss))
    print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
    writer.add_scalar("test_loss",total_test_loss,total_test_step)
    writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)  
    total_test_step = total_test_step + 1
    
    torch.save(tudui, "./model/tudui_{}.pth".format(i)) # 保存每一轮训练后的结果
    print("模型已保存")
    
writer.close()
  1. 特殊层作用
    ① model.train()和model.eval()的区别主要在于Batch Normalization和Dropout两层。

② 如果模型中有BN层(Batch Normalization)和 Dropout,需要在训练时添加model.train()。model.train()是保证BN层能够用到每一批数据的均值和方差。对于Dropout,model.train()是随机取一部分网络连接来训练更新参数。

③ 不启用 Batch Normalization 和 Dropout。 如果模型中有BN层(Batch Normalization)和Dropout,在测试时添加model.eval()。model.eval()是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN层的均值和方差不变。对于Dropout,model.eval()是利用到了所有网络连接,即不进行随机舍弃神经元。

④ 训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有BN层和Dropout所带来的的性质。

⑤ 在做one classification的时候,训练集和测试集的样本分布是不一样的,尤其需要注意这一点。

import torchvision
import torch
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

# from model import * 相当于把 model中的所有内容写到这里,这里直接把 model 写在这里
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()        
        self.model1 = nn.Sequential(
            nn.Conv2d(3,32,5,1,2),  # 输入通道3,输出通道32,卷积核尺寸5×5,步长1,填充2    
            nn.MaxPool2d(2),
            nn.Conv2d(32,32,5,1,2),
            nn.MaxPool2d(2),
            nn.Conv2d(32,64,5,1,2),
            nn.MaxPool2d(2),
            nn.Flatten(),  # 展平后变成 64*4*4 了
            nn.Linear(64*4*4,64),
            nn.Linear(64,10)
        )
        
    def forward(self, x):
        x = self.model1(x)
        return x

# 准备数据集
train_data = torchvision.datasets.CIFAR10("./dataset",train=True,transform=torchvision.transforms.ToTensor(),download=True)       
test_data = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)       

# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data_size=10,则打印:训练数据集的长度为:10
print("训练数据集的长度:{}".format(train_data_size))
print("测试数据集的长度:{}".format(test_data_size))

# 利用 Dataloader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)        
test_dataloader = DataLoader(test_data, batch_size=64)

# 创建网络模型
tudui = Tudui() 

# 损失函数
loss_fn = nn.CrossEntropyLoss() # 交叉熵,fn 是 fuction 的缩写

# 优化器
learning = 0.01  # 1e-2 就是 0.01 的意思
optimizer = torch.optim.SGD(tudui.parameters(),learning)   # 随机梯度下降优化器  

# 设置网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0

# 训练的轮次
epoch = 10

# 添加 tensorboard
writer = SummaryWriter("logs")

for i in range(epoch):
    print("-----第 {} 轮训练开始-----".format(i+1))
    
    # 训练步骤开始
    tudui.train() # 当网络中有dropout层、batchnorm层时,这些层能起作用
    for data in train_dataloader:
        imgs, targets = data
        outputs = tudui(imgs)
        loss = loss_fn(outputs, targets) # 计算实际输出与目标输出的差距
        
        # 优化器对模型调优
        optimizer.zero_grad()  # 梯度清零
        loss.backward() # 反向传播,计算损失函数的梯度
        optimizer.step()   # 根据梯度,对网络的参数进行调优
        
        total_train_step = total_train_step + 1
        if total_train_step % 100 == 0:
            print("训练次数:{},Loss:{}".format(total_train_step,loss.item()))  # 方式二:获得loss值
            writer.add_scalar("train_loss",loss.item(),total_train_step)
    
    # 测试步骤开始(每一轮训练后都查看在测试数据集上的loss情况)
    tudui.eval()  # 当网络中有dropout层、batchnorm层时,这些层不能起作用
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():  # 没有梯度了
        for data in test_dataloader: # 测试数据集提取数据
            imgs, targets = data
            outputs = tudui(imgs)
            loss = loss_fn(outputs, targets) # 仅data数据在网络模型上的损失
            total_test_loss = total_test_loss + loss.item() # 所有loss
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy
            
    print("整体测试集上的Loss:{}".format(total_test_loss))
    print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
    writer.add_scalar("test_loss",total_test_loss,total_test_step)
    writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)  
    total_test_step = total_test_step + 1
    
    torch.save(tudui, "./model/tudui_{}.pth".format(i)) # 保存每一轮训练后的结果
    #torch.save(tudui.state_dict(),"tudui_{}.path".format(i)) # 保存方式二         
    print("模型已保存")
    
writer.close()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值