/*
- Sample disk driver, from the beginning.
*/
#include <linux/version.h> /* LINUX_VERSION_CODE /
#include <linux/blk-mq.h>
/ https://olegkutkov.me/2020/02/10/linux-block-device-driver/
https://prog.world/linux-kernel-5-0-we-write-simple-block-device-under-blk-mq/
blk-mq and kernels >= 5.0
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/kernel.h> /* printk() /
#include <linux/slab.h> / kmalloc() /
#include <linux/fs.h> / everything… /
#include <linux/errno.h> / error codes /
#include <linux/timer.h>
#include <linux/types.h> / size_t /
#include <linux/fcntl.h> / O_ACCMODE /
#include <linux/hdreg.h> / HDIO_GETGEO /
#include <linux/kdev_t.h>
#include <linux/vmalloc.h>
#include <linux/genhd.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h> / invalidate_bdev */
#include <linux/bio.h>
MODULE_LICENSE(“Dual BSD/GPL”);
static int sbull_major = 0;
module_param(sbull_major, int, 0);
static int hardsect_size = 512;
module_param(hardsect_size, int, 0);
static int nsectors = 1024; /* How big the drive is */
module_param(nsectors, int, 0);
static int ndevices = 4;
module_param(ndevices, int, 0);
/*
- The different “request modes” we can use.
/
enum {
RM_SIMPLE = 0, / The extra-simple request function /
RM_FULL = 1, / The full-blown version /
RM_NOQUEUE = 2, / Use make_request */
};
static int request_mode = RM_SIMPLE;
module_param(request_mode, int, 0);
/*
- Minor number and partition management.
*/
#define SBULL_MINORS 16
#define MINOR_SHIFT 4
#define DEVNUM(kdevnum) (MINOR(kdev_t_to_nr(kdevnum)) >> MINOR_SHIFT
/*
- We can tweak our hardware sector size, but the kernel talks to us
- in terms of small sectors, always.
*/
#define KERNEL_SECTOR_SIZE 512
/*
- After this much idle time, the driver will simulate a media change.
/
#define INVALIDATE_DELAY 30HZ
/*
- The internal representation of our device.
/
struct sbull_dev {
int size; / Device size in sectors */
u8 data; / The data array /
short users; / How many users /
short media_change; / Flag a media change? /
spinlock_t lock; / For mutual exclusion /
struct blk_mq_tag_set tag_set; / tag_set added */
struct request_queue queue; / The device request queue */
struct gendisk gd; / The gendisk structure /
struct timer_list timer; / For simulated media changes */
};
static struct sbull_dev *Devices = NULL;
/**
-
See https://github.com/openzfs/zfs/pull/10187/
*/
#if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 9, 0))
static inline struct request_queue *
blk_generic_alloc_queue(make_request_fn make_request, int node_id)
#else
static inline struct request_queue *
blk_generic_alloc_queue(int node_id)
#endif
{
#if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 7, 0))
struct request_queue *q = blk_alloc_queue(GFP_KERNEL);
if (q != NULL)
blk_queue_make_request(q, make_request);return (q);
#elif (LINUX_VERSION_CODE < KERNEL_VERSION(5, 9, 0))
return (blk_alloc_queue(make_request, node_id));
#else
return (blk_alloc_queue(node_id));
#endif
}
/*
-
Handle an I/O request.
*/
static void sbull_transfer(struct sbull_dev dev, unsigned long sector,
unsigned long nsect, char buffer, int write)
{
unsigned long offset = sectorKERNEL_SECTOR_SIZE;
unsigned long nbytes = nsectKERNEL_SECTOR_SIZE;if ((offset + nbytes) > dev->size) {
printk (KERN_NOTICE “Beyond-end write (%ld %ld)\n”, offset, nbytes);
return;
}
if (write)
memcpy(dev->data + offset, buffer, nbytes);
else
memcpy(buffer, dev->data + offset, nbytes);
}
/*
-
The simple form of the request function.
*/
//static void sbull_request(struct request_queue q)
static blk_status_t sbull_request(struct blk_mq_hw_ctx hctx, const struct blk_mq_queue_data bd) / For blk-mq */
{
struct request *req = bd->rq;
struct sbull_dev *dev = req->rq_disk->private_data;
struct bio_vec bvec;
struct req_iterator iter;
sector_t pos_sector = blk_rq_pos(req);
void *buffer;
blk_status_t ret;blk_mq_start_request (req);
if (blk_rq_is_passthrough(req)) {
printk (KERN_NOTICE “Skip non-fs request\n”);
ret = BLK_STS_IOERR; //-EIO
goto done;
}
rq_for_each_segment(bvec, req, iter)
{
size_t num_sector = blk_rq_cur_sectors(req);
printk (KERN_NOTICE “Req dev %u dir %d sec %lld, nr %ld\n”,
(unsigned)(dev - Devices), rq_data_dir(req),
pos_sector, num_sector);
buffer = page_address(bvec.bv_page) + bvec.bv_offset;
sbull_transfer(dev, pos_sector, num_sector,
buffer, rq_data_dir(req) == WRITE);
pos_sector += num_sector;
}
ret = BLK_STS_OK;
done:
blk_mq_end_request (req, ret);
return ret;
}
/*
-
Transfer a single BIO.
*/
static int sbull_xfer_bio(struct sbull_dev *dev, struct bio *bio)
{
struct bio_vec bvec;
struct bvec_iter iter;
sector_t sector = bio->bi_iter.bi_sector;/* Do each segment independently. */
bio_for_each_segment(bvec, bio, iter) {
//char *buffer = __bio_kmap_atomic(bio, i, KM_USER0);
char buffer = kmap_atomic(bvec.bv_page) + bvec.bv_offset;
//sbull_transfer(dev, sector, bio_cur_bytes(bio) >> 9,
sbull_transfer(dev, sector, (bio_cur_bytes(bio) / KERNEL_SECTOR_SIZE),
buffer, bio_data_dir(bio) == WRITE);
//sector += bio_cur_bytes(bio) >> 9;
sector += (bio_cur_bytes(bio) / KERNEL_SECTOR_SIZE);
//__bio_kunmap_atomic(buffer, KM_USER0);
kunmap_atomic(buffer);
}
return 0; / Always “succeed” */
}
/*
-
Transfer a full request.
*/
static int sbull_xfer_request(struct sbull_dev *dev, struct request *req)
{
struct bio *bio;
int nsect = 0;__rq_for_each_bio(bio, req) {
sbull_xfer_bio(dev, bio);
//nsect += bio->bi_size/KERNEL_SECTOR_SIZE;
nsect += bio->bi_iter.bi_size/KERNEL_SECTOR_SIZE;
}
return nsect;
}
/*
-
Smarter request function that “handles clustering”.
*/
//static void sbull_full_request(struct request_queue *q)
static blk_status_t sbull_full_request(struct blk_mq_hw_ctx * hctx, const struct blk_mq_queue_data * bd)
{
struct request *req = bd->rq;
int sectors_xferred;
//struct sbull_dev *dev = q->queuedata;
struct sbull_dev *dev = req->q->queuedata;
blk_status_t ret;blk_mq_start_request (req);
//while ((req = blk_fetch_request(q)) != NULL) {
//if (req->cmd_type != REQ_TYPE_FS) {
if (blk_rq_is_passthrough(req)) {
printk (KERN_NOTICE “Skip non-fs request\n”);
//__blk_end_request(req, -EIO, blk_rq_cur_bytes(req));
ret = BLK_STS_IOERR; //-EIO;
//continue;
goto done;
}
sectors_xferred = sbull_xfer_request(dev, req);
ret = BLK_STS_OK;
done:
//__blk_end_request(req, 0, sectors_xferred);
blk_mq_end_request (req, ret);
//}
return ret;
}
/*
-
The direct make request version.
*/
#if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 9, 0))
//static void sbull_make_request(struct request_queue *q, struct bio *bio)
static blk_qc_t sbull_make_request(struct request_queue *q, struct bio *bio)
#else
static blk_qc_t sbull_make_request(struct bio *bio)
#endif
{
//struct sbull_dev *dev = q->queuedata;
struct sbull_dev *dev = bio->bi_disk->private_data;
int status;status = sbull_xfer_bio(dev, bio);
bio->bi_status = status;
bio_endio(bio);
return BLK_QC_T_NONE;
}
/*
- Open and close.
*/
static int sbull_open(struct block_device *bdev, fmode_t mode)
{
struct sbull_dev *dev = bdev->bd_disk->private_data;
del_timer_sync(&dev->timer);
//filp->private_data = dev;
spin_lock(&dev->lock);
if (! dev->users)
{
#if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 10, 0))
check_disk_change(bdev);
#else
/* For newer kernels (as of 5.10), bdev_check_media_change()
* is used, in favor of check_disk_change(),
* with the modification that invalidation
* is no longer forced. */
if(bdev_check_media_change(bdev))
{
struct gendisk *gd = bdev->bd_disk;
const struct block_device_operations *bdo = gd->fops;
if (bdo && bdo->revalidate_disk)
bdo->revalidate_disk(gd);
}
#endif
}
dev->users++;
spin_unlock(&dev->lock);
return 0;
}
static void sbull_release(struct gendisk *disk, fmode_t mode)
{
struct sbull_dev *dev = disk->private_data;
spin_lock(&dev->lock);
dev->users--;
if (!dev->users) {
dev->timer.expires = jiffies + INVALIDATE_DELAY;
add_timer(&dev->timer);
}
spin_unlock(&dev->lock);
}
/*
-
Look for a (simulated) media change.
*/
int sbull_media_changed(struct gendisk *gd)
{
struct sbull_dev *dev = gd->private_data;return dev->media_change;
}
/*
-
Revalidate. WE DO NOT TAKE THE LOCK HERE, for fear of deadlocking
-
with open. That needs to be reevaluated.
*/
int sbull_revalidate(struct gendisk *gd)
{
struct sbull_dev *dev = gd->private_data;if (dev->media_change) {
dev->media_change = 0;
memset (dev->data, 0, dev->size);
}
return 0;
}
/*
-
The “invalidate” function runs out of the device timer; it sets
-
a flag to simulate the removal of the media.
*/
#if (LINUX_VERSION_CODE < KERNEL_VERSION(4, 15, 0)) && !defined(timer_setup)
void sbull_invalidate(unsigned long ldev)
{
struct sbull_dev *dev = (struct sbull_dev *) ldev;
#else
void sbull_invalidate(struct timer_list * ldev)
{
struct sbull_dev *dev = from_timer(dev, ldev, timer);
#endifspin_lock(&dev->lock);
if (dev->users || !dev->data)
printk (KERN_WARNING “sbull: timer sanity check failed\n”);
else
dev->media_change = 1;
spin_unlock(&dev->lock);
}
/*
- The ioctl() implementation
*/
int sbull_ioctl (struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
long size;
struct hd_geometry geo;
struct sbull_dev *dev = bdev->bd_disk->private_data;
switch(cmd) {
case HDIO_GETGEO:
/*
* Get geometry: since we are a virtual device, we have to make
* up something plausible. So we claim 16 sectors, four heads,
* and calculate the corresponding number of cylinders. We set the
* start of data at sector four.
*/
size = dev->size*(hardsect_size/KERNEL_SECTOR_SIZE);
geo.cylinders = (size & ~0x3f) >> 6;
geo.heads = 4;
geo.sectors = 16;
geo.start = 4;
if (copy_to_user((void __user *) arg, &geo, sizeof(geo)))
return -EFAULT;
return 0;
}
return -ENOTTY; /* unknown command */
}
/*
- The device operations structure.
*/
static struct block_device_operations sbull_ops = {
.owner = THIS_MODULE,
.open = sbull_open,
.release = sbull_release,
#if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 9, 0))
.media_changed = sbull_media_changed, // DEPRECATED in v5.9
#else
.submit_bio = sbull_make_request,
#endif
.revalidate_disk = sbull_revalidate,
.ioctl = sbull_ioctl
};
static struct blk_mq_ops mq_ops_simple = {
.queue_rq = sbull_request,
};
static struct blk_mq_ops mq_ops_full = {
.queue_rq = sbull_full_request,
};
/*
-
Set up our internal device.
*/
static void setup_device(struct sbull_dev dev, int which)
{
/- Get some memory.
/
memset (dev, 0, sizeof (struct sbull_dev));
dev->size = nsectorshardsect_size;
dev->data = vmalloc(dev->size);
if (dev->data == NULL) {
printk (KERN_NOTICE “vmalloc failure.\n”);
return;
}
spin_lock_init(&dev->lock);
/*
- The timer which “invalidates” the device.
*/
#if (LINUX_VERSION_CODE < KERNEL_VERSION(4, 15, 0)) && !defined(timer_setup)
init_timer(&dev->timer);
dev->timer.data = (unsigned long) dev;
dev->timer.function = sbull_invalidate;
#else
timer_setup(&dev->timer, sbull_invalidate, 0);
#endif
/*
-
The I/O queue, depending on whether we are using our own
-
make_request function or not.
*/
switch (request_mode) {
case RM_NOQUEUE:
#if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 9, 0))
dev->queue = blk_generic_alloc_queue(sbull_make_request, NUMA_NO_NODE);
#else
dev->queue = blk_generic_alloc_queue(NUMA_NO_NODE);
#endif
if (dev->queue == NULL)
goto out_vfree;
break;case RM_FULL:
//dev->queue = blk_init_queue(sbull_full_request, &dev->lock);
dev->queue = blk_mq_init_sq_queue(&dev->tag_set, &mq_ops_full, 128, BLK_MQ_F_SHOULD_MERGE);
if (dev->queue == NULL)
goto out_vfree;
break;default:
printk(KERN_NOTICE “Bad request mode %d, using simple\n”, request_mode);
/* fall into… */case RM_SIMPLE:
//dev->queue = blk_init_queue(sbull_request, &dev->lock);
dev->queue = blk_mq_init_sq_queue(&dev->tag_set, &mq_ops_simple, 128, BLK_MQ_F_SHOULD_MERGE);
if (dev->queue == NULL)
goto out_vfree;
break;
}
blk_queue_logical_block_size(dev->queue, hardsect_size);
dev->queue->queuedata = dev;
/* -
And the gendisk structure.
/
dev->gd = alloc_disk(SBULL_MINORS);
if (! dev->gd) {
printk (KERN_NOTICE “alloc_disk failure\n”);
goto out_vfree;
}
dev->gd->major = sbull_major;
dev->gd->first_minor = whichSBULL_MINORS;
dev->gd->fops = &sbull_ops;
dev->gd->queue = dev->queue;
dev->gd->private_data = dev;
snprintf (dev->gd->disk_name, 32, “sbull%c”, which + ‘a’);
set_capacity(dev->gd, nsectors*(hardsect_size/KERNEL_SECTOR_SIZE));
add_disk(dev->gd);
return;
- Get some memory.
out_vfree:
if (dev->data)
vfree(dev->data);
}
static int __init sbull_init(void)
{
int i;
/*
* Get registered.
/
sbull_major = register_blkdev(sbull_major, “sbull”);
if (sbull_major <= 0) {
printk(KERN_WARNING “sbull: unable to get major number\n”);
return -EBUSY;
}
/
* Allocate the device array, and initialize each one.
/
Devices = kmalloc(ndevicessizeof (struct sbull_dev), GFP_KERNEL);
if (Devices == NULL)
goto out_unregister;
for (i = 0; i < ndevices; i++)
setup_device(Devices + i, i);
return 0;
out_unregister:
unregister_blkdev(sbull_major, “sbd”);
return -ENOMEM;
}
static void sbull_exit(void)
{
int i;
for (i = 0; i < ndevices; i++) {
struct sbull_dev *dev = Devices + i;
del_timer_sync(&dev->timer);
if (dev->gd) {
del_gendisk(dev->gd);
put_disk(dev->gd);
}
if (dev->queue) {
if (request_mode == RM_NOQUEUE)
//kobject_put (&dev->queue->kobj);
blk_put_queue(dev->queue);
else
blk_cleanup_queue(dev->queue);
}
if (dev->data)
vfree(dev->data);
}
unregister_blkdev(sbull_major, "sbull");
kfree(Devices);
}
module_init(sbull_init);
module_exit(sbull_exit);