Notice that the number 123456789 is a 9-digit number consisting exactly the numbers from 1 to 9, with no duplication. Double it we will obtain 246913578, which happens to be another 9-digit number consisting exactly the numbers from 1 to 9, only in a different permutation. Check to see the result if we double it again!
Now you are suppose to check if there are more numbers with this property. That is, double a given number with k digits, you are to tell if the resulting number consists of only a permutation of the digits in the original number.
Input Specification:
Each input contains one test case. Each case contains one positive integer with no more than 20 digits.
Output Specification:
For each test case, first print in a line "Yes" if doubling the input number gives a number that consists of only a permutation of the digits in the original number, or "No" if not. Then in the next line, print the doubled number.
Sample Input:
1234567899
Sample Output:
Yes
2469135798
题意分析:
整数乘以二转换成两个相同的大整数相加,然后使用两个map来存放两个字符串中的0-9的每个数字的个数,最后将两个map进行逐数字比较
代码如下:
#include<bits/stdc++.h>
using namespace std;
string multiple2(string s)
{
reverse(s.begin(), s.end());
string s2 = s, res;
int carry = 0;
for (int i = 0; i < s2.length()|| i < s.length(); i++) {
int temp = (s2[i]-'0') + (s[i]-'0') + carry;//对应位相加,再加上进位
res += temp % 10 + '0';//相加个位数为当前位的结果
carry = temp / 10;
}
if (carry != 0)res += carry + '0';
reverse(res.begin(), res.end());
return res;
}
int main()
{
string s,s2;
map<char, int> count,count2;
cin >> s;
s2 = multiple2(s);
for (int i = 0; i < s.length(); i++) {
count[s[i]]++;
}
for (int i = 0; i < s2.length(); i++) {
count2[s2[i]]++;
}
int i;
for (i = 0; i <= 9; i++) {
if (count[i+'0'] != count2[i+'0'])
break;
}
if (i > 9)cout << "Yes" << endl;
else cout << "No" << endl;
cout << s2 << endl;
return 0;
}
运行结果如下: