亚像素级别角点检测
角点检测点精确到float型,使得检测结果更加精确。
可用于目标跟踪,三维重建,相机矫正
opencv中的goodFeaturesToTrack函数可以计算Harris角点和shi-tomasi角点,但默认情况下计算的是shi-tomasi角点,函数原型如下:
void cv::goodFeaturesToTrack( InputArray _image, OutputArray _corners,
int maxCorners, double qualityLevel, double minDistance,
InputArray _mask, int blockSize,
bool useHarrisDetector, double harrisK )
_image:8位或32位浮点型输入图像,单通道
_corners:保存检测出的角点
maxCorners:角点数目最大值,如果实际检测的角点超过此值,则只返回前maxCorners个强角点
qualityLevel:角点的品质因子
minDistance:对于初选出的角点而言,如果在其周围minDistance范围内存在其他更强角点,则将此角点删除
_mask:指定感兴趣区,如不需在整幅图上寻找角点,则用此参数指定ROI
blockSize:计算协方差矩阵时的窗口大小
useHarrisDetector:指示是否使用Harris角点检测,如不指定,则计算shi-tomasi角点
harrisK:Harris角点检测需要的k值
cornerSubPix()函数
C++: void cornerSubPix(InputArray image, InputOutputArray corners, Size winSize, Size zeroZone, TermCriteria criteria);
函数参数说明如下:
image:输入图像
corners:输入角点的初始坐标以及精准化后的坐标用于输出。
winSize:搜索窗口边长的一半,例如如果winSize=Size(5,5),则一个大小为的搜索窗口将被使用。
zeroZone:搜索区域中间的dead region边长的一半,有时用于避免自相关矩阵的奇异性。如果值设为(-1,-1)则表示没有这个区域。
criteria:角点精准化迭代过程的终止条件。也就是当迭代次数超过criteria.maxCount,或者角点位置变化小于criteria.epsilon时,停止迭代过程。
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;
int max_corners = 20;
int max_count = 50;
Mat src, gray_src;
const char* output_title = "SubPixel Result";
void SubPixel_Demo(int, void*);
int main(int argc, char** argv) {
src = imread("D:/1.jpg");
if (src.empty()) {
printf("could not load image...\n");
return -1;
}
namedWindow("input image", WINDOW_AUTOSIZE);
imshow("input image", src);
cvtColor(src, gray_src, COLOR_BGR2GRAY);
namedWindow(output_title, WINDOW_AUTOSIZE);
createTrackbar("Corners:", output_title, &max_corners, max_count, SubPixel_Demo);
SubPixel_Demo(0, 0);
waitKey(0);
return 0;
}
void SubPixel_Demo(int, void*) {
if (max_corners < 5) {
max_corners = 5;
}
vector<Point2f> corners;
double qualityLevel = 0.01;
double minDistance = 10;
int blockSize = 3;
double k = 0.04;
goodFeaturesToTrack(gray_src, corners, max_corners, qualityLevel, minDistance, Mat(), blockSize, false, k);
cout << "number of corners: " << corners.size() << endl;
Mat resultImg = src.clone();
for (size_t t = 0; t < corners.size(); t++) {
circle(resultImg, corners[t], 2, Scalar(0, 0, 255), 2, 8, 0);
}
imshow(output_title, resultImg);
Size winSize = Size(5, 5);
Size zerozone = Size(-1, -1);
TermCriteria tc = TermCriteria(TermCriteria::EPS + TermCriteria::MAX_ITER, 40, 0.001);
cornerSubPix(gray_src, corners, winSize, zerozone, tc);
for (size_t t = 0; t < corners.size(); t++) {
cout << (t + 1) << " .point[x, y] = " << corners[t].x << " , " << corners[t].y << endl;
}
return;
}