目录
1 封装
1.1 意义
- 将属性和行为作为一个整体,表现生活中的事物
- 将属性和行为加以权限控制
在设计类的时候,属性和行为写在一起,表现事物
语法:class 类名{ 访问权限:属性/行为};
class Circle
{
public: //访问权限
//属性
int m_r; //半径
//行为
doublie calculateZC()
{
return 2 * PI * m_r;
}
};
Circcle c1;
c1.m_r = 10;
c1.calculateZC();
类在设计时,可以把属性和行为放在不同的权限下,加以控制,访问权限有三种:
- public公共权限
- protected保护权限
- private私有权限
1.2 struct和class区别
在C++中 struct和class唯一的区别就在于 默认的访问权限不同,区别:
- struct 默认权限为公共
- class 默认权限为私有
1.3 成员属性设置为私有
优点1: 将所有成员属性设置为私有,可以自己控制读写权限
优点2: 对于写权限,我们可以检测数据的有效性
1.4 构造函数和析构函数
对象的初始化和清理也是两个非常重要的安全问题,一个对象或者变量没有初始状态,对其使用后果是未知,同样的使用完一个对象或变量,没有及时清理,也会造成一定的安全问题
c++利用了构造函数和析构函数解决上述问题,这两个函数将会被编译器自动调用,完成对象初始化和清理工作。
对象的初始化和清理工作是编译器强制要我们做的事情,因此如果我们不提供构造和析构,编译器会提供
编译器提供的构造函数和析构函数是空实现。
- 构造函数:主要作用在于创建对象时为对象的成员属性赋值,构造函数由编译器自动调用,无须手动调用。
- 析构函数:主要作用在于对象销毁前系统自动调用,执行一些清理工作。
构造函数语法:
类名(){}
- 构造函数,没有返回值也不写void
- 函数名称与类名相同
- 构造函数可以有参数,因此可以发生重载
- 程序在调用对象时候会自动调用构造,无须手动调用,而且只会调用一次
析构函数语法:
~类名(){}
- 析构函数,没有返回值也不写void
- 函数名称与类名相同,在名称前加上符号 ~
- 析构函数不可以有参数,因此不可以发生重载
- 程序在对象销毁前会自动调用析构,无须手动调用,而且只会调用一次
class Person
{
public:
//构造函数
Person()
{
cout << "Person的构造函数调用" << endl;
}
//析构函数
~Person()
{
cout << "Person的析构函数调用" << endl;
}
};
void test01()
{
Person p;
}
int main() {
test01();
return 0;
}
1.5 构造函数的分类与调用
两种分类方式:
- 按参数分为: 有参构造和无参构造
- 按类型分为: 普通构造和拷贝构造
三种调用方式:
- 括号法
- 显示法
- 隐式转换法
//1、构造函数分类
// 按照参数分类分为 有参和无参构造 无参又称为默认构造函数
// 按照类型分类分为 普通构造和拷贝构造
class Person {
public:
//无参(默认)构造函数
Person() {
cout << "无参构造函数!" << endl;
}
//有参构造函数
Person(int a) {
age = a;
cout << "有参构造函数!" << endl;
}
//拷贝构造函数
Person(const Person& p) {
age = p.age;
cout << "拷贝构造函数!" << endl;
}
//析构函数
~Person() {
cout << "析构函数!" << endl;
}
public:
int age;
};
//2、构造函数的调用
//调用无参构造函数
void test01() {
Person p; //调用无参构造函数
}
//调用有参的构造函数
void test02() {
//2.1 括号法,常用
Person p1(10);
//注意1:调用无参构造函数不能加括号,如果加了编译器认为这是一个函数声明
//Person p2();
//2.2 显式法
Person p2 = Person(10);
Person p3 = Person(p2);
//Person(10)单独写就是匿名对象 当前行结束之后,马上析构
//2.3 隐式转换法
Person p4 = 10; // Person p4 = Person(10);
Person p5 = p4; // Person p5 = Person(p4);
//注意2:不能利用 拷贝构造函数 初始化匿名对象 编译器认为是对象声明
//Person p5(p4);
}
int main() {
test01();
//test02();
return 0;
}
1.6 拷贝构造函数调用时机
C++中拷贝构造函数调用时机通常有三种情况
- 使用一个已经创建完毕的对象来初始化一个新对象
- 值传递的方式给函数参数传值
- 以值方式返回局部对象
1.7 构造函数调用规则
默认情况下,c++编译器至少给一个类添加3个函数
- 默认构造函数(无参,函数体为空)
- 默认析构函数(无参,函数体为空)
- 默认拷贝构造函数,对属性进行值拷贝
构造函数调用规则如下:
- 如果用户定义有参构造函数,c++不在提供默认无参构造,但是会提供默认拷贝构造
- 如果用户定义拷贝构造函数,c++不会再提供其他构造函数
1.8 深拷贝与浅拷贝
深浅拷贝是面试经典问题,也是常见的一个坑
- 浅拷贝:简单的赋值拷贝操作
- 深拷贝:在堆区重新申请空间,进行拷贝操作
1.9 初始化列表
作用:
C++提供了初始化列表语法,用来初始化属性
语法:
构造函数():属性1(值1),属性2(值2)... {}
class Person {
public:
传统方式初始化
//Person(int a, int b, int c) {
// m_A = a;
// m_B = b;
// m_C = c;
//}
//初始化列表方式初始化
Person(int a, int b, int c) :m_A(a), m_B(b), m_C(c) {}
void PrintPerson() {
cout << "mA:" << m_A << endl;
cout << "mB:" << m_B << endl;
cout << "mC:" << m_C << endl;
}
private:
int m_A;
int m_B;
int m_C;
};
int main() {
Person p(1, 2, 3);
p.PrintPerson();
return 0;
}
1.9 类对象作为类成员
C++类中的成员可以是另一个类的对象,我们称该成员为 对象成员
class A {}
class B
{
A a;
}
那么在创建B对象时,A与B的构造和析构的顺序是谁先谁后
class Phone
{
public:
Phone(string name)
{
m_PhoneName = name;
cout << "Phone构造" << endl;
}
~Phone()
{
cout << "Phone析构" << endl;
}
string m_PhoneName;
};
class Person
{
public:
//初始化列表可以告诉编译器调用哪一个构造函数
Person(string name, string pName) :m_Name(name), m_Phone(pName)
{
cout << "Person构造" << endl;
}
~Person()
{
cout << "Person析构" << endl;
}
void playGame()
{
cout << m_Name << " 使用" << m_Phone.m_PhoneName << " 牌手机! " << endl;
}
string m_Name;
Phone m_Phone;
};
void test01()
{
//当类中成员是其他类对象时,我们称该成员为 对象成员
//构造的顺序是 :先调用对象成员的构造,再调用本类构造
//析构顺序与构造相反
Person p("张三" , "苹果X");
p.playGame();
}
int main() {
test01();
return 0;
}
1.10 静态成员
静态成员就是在成员变量和成员函数前加上关键字static,称为静态成员
静态成员分为:
- 静态成员变量
- 所有对象共享同一份数据
- 在编译阶段分配内存
- 类内声明,类外初始化
- 静态成员函数
- 所有对象共享同一个函数
- 静态成员函数只能访问静态成员变量
静态成员变量
class Person
{
public:
static int m_A; //静态成员变量
//静态成员变量特点:
//1 在编译阶段分配内存
//2 类内声明,类外初始化
//3 所有对象共享同一份数据
private:
static int m_B; //静态成员变量也是有访问权限的
};
int Person::m_A = 10;
int Person::m_B = 10;
void test01()
{
//静态成员变量两种访问方式
//1、通过对象
Person p1;
p1.m_A = 100;
cout << "p1.m_A = " << p1.m_A << endl;
Person p2;
p2.m_A = 200;
cout << "p1.m_A = " << p1.m_A << endl; //共享同一份数据
cout << "p2.m_A = " << p2.m_A << endl;
//2、通过类名
cout << "m_A = " << Person::m_A << endl;
//cout << "m_B = " << Person::m_B << endl; //私有权限访问不到
}
int main() {
test01();
return 0;
}
静态成员函数
class Person
{
public:
//静态成员函数特点:
//1 程序共享一个函数
//2 静态成员函数只能访问静态成员变量
static void func()
{
cout << "func调用" << endl;
m_A = 100;
//m_B = 100; //错误,不可以访问非静态成员变量
}
static int m_A; //静态成员变量
int m_B; //
private:
//静态成员函数也是有访问权限的
static void func2()
{
cout << "func2调用" << endl;
}
};
int Person::m_A = 10;
void test01()
{
//静态成员变量两种访问方式
//1、通过对象
Person p1;
p1.func();
//2、通过类名
Person::func();
//Person::func2(); //私有权限访问不到
}
int main() {
test01();
system("pause");
return 0;
}
1.11成员变量和成员函数分开存储
在C++中,类内的成员变量和成员函数分开存储,只有非静态成员变量才属于类的对象上
class Person {
public:
Person() {
mA = 0;
}
//非静态成员变量占对象空间
int mA;
//静态成员变量不占对象空间
static int mB;
//函数也不占对象空间,所有函数共享一个函数实例
void func() {
cout << "mA:" << this->mA << endl;
}
//静态成员函数也不占对象空间
static void sfunc() {
}
};
int main() {
cout << sizeof(Person) << endl;
system("pause");
return 0;
}
1.12 this指针概念
C++中成员变量和成员函数是分开存储的
每一个非静态成员函数只会诞生一份函数实例,也就是说多个同类型的对象会共用一块代码
那么问题是:这一块代码是如何区分那个对象调用自己的呢?
c++通过提供特殊的对象指针,this指针,解决上述问题。this指针指向被调用的成员函数所属的对象
this指针是隐含每一个非静态成员函数内的一种指针
this指针不需要定义,直接使用即可
this指针的用途:
- 当形参和成员变量同名时,可用this指针来区分
- 在类的非静态成员函数中返回对象本身,可使用return *this
class Person
{
public:
Person(int age)
{
//1、当形参和成员变量同名时,可用this指针来区分
this->age = age;
}
Person& PersonAddPerson(Person p)
{
this->age += p.age;
//返回对象本身
return *this;
}
int age;
};
void test01()
{
Person p1(10);
cout << "p1.age = " << p1.age << endl;
Person p2(10);
p2.PersonAddPerson(p1).PersonAddPerson(p1).PersonAddPerson(p1);
cout << "p2.age = " << p2.age << endl;
}
int main() {
test01();
return 0;
}
1.13 空指针访问成员函数
C++中空指针也是可以调用成员函数的,但是也要注意有没有用到this指针
如果用到this指针,需要加以判断保证代码的健壮性
//空指针访问成员函数
class Person {
public:
void ShowClassName() {
cout << "我是Person类!" << endl;
}
void ShowPerson() {
if (this == NULL) {
return;
}
cout << mAge << endl;
}
public:
int mAge;
};
void test01()
{
Person * p = NULL;
p->ShowClassName(); //空指针,可以调用成员函数
p->ShowPerson(); //但是如果成员函数中用到了this指针,就不可以了
}
int main() {
test01();
return 0;
}
1.14 const修饰成员函数
常函数:
- 成员函数后加const后我们称为这个函数为常函数
- 常函数内不可以修改成员属性
- 成员属性声明时加关键字mutable后,在常函数中依然可以修改
常对象:
- 声明对象前加const称该对象为常对象
- 常对象只能调用常函数
class Person {
public:
Person() {
m_A = 0;
m_B = 0;
}
//this指针的本质是一个指针常量,指针的指向不可修改
//如果想让指针指向的值也不可以修改,需要声明常函数
void ShowPerson() const {
//const Type* const pointer;
//this = NULL; //不能修改指针的指向 Person* const this;
//this->mA = 100; //但是this指针指向的对象的数据是可以修改的
//const修饰成员函数,表示指针指向的内存空间的数据不能修改,除了mutable修饰的变量
this->m_B = 100;
}
void MyFunc() const {
//mA = 10000;
}
public:
int m_A;
mutable int m_B; //可修改 可变的
};
//const修饰对象 常对象
void test01() {
const Person person; //常量对象
cout << person.m_A << endl;
//person.mA = 100; //常对象不能修改成员变量的值,但是可以访问
person.m_B = 100; //但是常对象可以修改mutable修饰成员变量
//常对象访问成员函数
person.MyFunc(); //常对象不能调用const的函数
}
int main() {
test01();
return 0;
}
1.15 友元
在程序里,有些私有属性 也想让类外特殊的一些函数或者类进行访问,就需要用到友元的技术
友元的目的就是让一个函数或者类 访问另一个类中私有成员
友元的关键字为 friend
友元的三种实现
- 全局函数做友元
- 类做友元
- 成员函数做友元
全局函数做友元
class Building
{
//告诉编译器 goodGay全局函数 是 Building类的好朋友,可以访问类中的私有内容
friend void goodGay(Building * building);
public:
Building()
{
this->m_SittingRoom = "客厅";
this->m_BedRoom = "卧室";
}
public:
string m_SittingRoom; //客厅
private:
string m_BedRoom; //卧室
};
void goodGay(Building * building)
{
cout << "好基友正在访问: " << building->m_SittingRoom << endl;
cout << "好基友正在访问: " << building->m_BedRoom << endl;
}
void test01()
{
Building b;
goodGay(&b);
}
int main(){
test01();
return 0;
}
类做友元
class Building;
class goodGay
{
public:
goodGay();
void visit();
private:
Building *building;
};
class Building
{
//告诉编译器 goodGay类是Building类的好朋友,可以访问到Building类中私有内容
friend class goodGay;
public:
Building();
public:
string m_SittingRoom; //客厅
private:
string m_BedRoom;//卧室
};
Building::Building()
{
this->m_SittingRoom = "客厅";
this->m_BedRoom = "卧室";
}
goodGay::goodGay()
{
building = new Building;
}
void goodGay::visit()
{
cout << "好基友正在访问" << building->m_SittingRoom << endl;
cout << "好基友正在访问" << building->m_BedRoom << endl;
}
void test01()
{
goodGay gg;
gg.visit();
}
int main(){
test01();
return 0;
}
成员函数做友元
class Building;
class goodGay
{
public:
goodGay();
void visit(); //只让visit函数作为Building的好朋友,可以发访问Building中私有内容
void visit2();
private:
Building *building;
};
class Building
{
//告诉编译器 goodGay类中的visit成员函数 是Building好朋友,可以访问私有内容
friend void goodGay::visit();
public:
Building();
public:
string m_SittingRoom; //客厅
private:
string m_BedRoom;//卧室
};
Building::Building()
{
this->m_SittingRoom = "客厅";
this->m_BedRoom = "卧室";
}
goodGay::goodGay()
{
building = new Building;
}
void goodGay::visit()
{
cout << "好基友正在访问" << building->m_SittingRoom << endl;
cout << "好基友正在访问" << building->m_BedRoom << endl;
}
void goodGay::visit2()
{
cout << "好基友正在访问" << building->m_SittingRoom << endl;
//cout << "好基友正在访问" << building->m_BedRoom << endl;
}
void test01()
{
goodGay gg;
gg.visit();
}
int main(){
test01();
return 0;
}
1.16 运算符重载
加号运算符重载
实现两个自定义数据类型相加的运算
class Person {
public:
Person() {};
Person(int a, int b)
{
this->m_A = a;
this->m_B = b;
}
//成员函数实现 + 号运算符重载
Person operator+(const Person& p) {
Person temp;
temp.m_A = this->m_A + p.m_A;
temp.m_B = this->m_B + p.m_B;
return temp;
}
public:
int m_A;
int m_B;
};
//全局函数实现 + 号运算符重载
//Person operator+(const Person& p1, const Person& p2) {
// Person temp(0, 0);
// temp.m_A = p1.m_A + p2.m_A;
// temp.m_B = p1.m_B + p2.m_B;
// return temp;
//}
//运算符重载 可以发生函数重载
Person operator+(const Person& p2, int val)
{
Person temp;
temp.m_A = p2.m_A + val;
temp.m_B = p2.m_B + val;
return temp;
}
void test() {
Person p1(10, 10);
Person p2(20, 20);
//成员函数方式
Person p3 = p2 + p1; //相当于 p2.operaor+(p1)
cout << "mA:" << p3.m_A << " mB:" << p3.m_B << endl;
Person p4 = p3 + 10; //相当于 operator+(p3,10)
cout << "mA:" << p4.m_A << " mB:" << p4.m_B << endl;
}
int main() {
test();
return 0;
}
左移运算符重载
可以输出自定义数据类型
class Person {
friend ostream& operator<<(ostream& out, Person& p);
public:
Person(int a, int b)
{
this->m_A = a;
this->m_B = b;
}
//成员函数 实现不了 p << cout 不是我们想要的效果
//void operator<<(Person& p){
//}
private:
int m_A;
int m_B;
};
//全局函数实现左移重载
//ostream对象只能有一个
ostream& operator<<(ostream& out, Person& p) {
out << "a:" << p.m_A << " b:" << p.m_B;
return out;
}
void test() {
Person p1(10, 20);
cout << p1 << "hello world" << endl; //链式编程
}
int main() {
test();
return 0;
}
递增运算符重载:
通过重载递增运算符,实现自己的整型数据
赋值运算符重载:
c++编译器至少给一个类添加4个函数
- 默认构造函数(无参,函数体为空)
- 默认析构函数(无参,函数体为空)
- 默认拷贝构造函数,对属性进行值拷贝
- 赋值运算符 operator=, 对属性进行值拷贝
如果类中有属性指向堆区,做赋值操作时也会出现深浅拷贝问题
关系运算符重载:
重载关系运算符,可以让两个自定义类型对象进行对比操作
函数调用运算符重载:
- 函数调用运算符 () 也可以重载
- 由于重载后使用的方式非常像函数的调用,因此称为仿函数
- 仿函数没有固定写法,非常灵活
2 继承
2.1 基本语法
示例:
//公共页面
class BasePage
{
public:
void header()
{
cout << "首页、公开课、登录、注册...(公共头部)" << endl;
}
void footer()
{
cout << "帮助中心、交流合作、站内地图...(公共底部)" << endl;
}
void left()
{
cout << "Java,Python,C++...(公共分类列表)" << endl;
}
};
//Java页面
class Java : public BasePage
{
public:
void content()
{
cout << "JAVA学科视频" << endl;
}
};
//Python页面
class Python : public BasePage
{
public:
void content()
{
cout << "Python学科视频" << endl;
}
};
//C++页面
class CPP : public BasePage
{
public:
void content()
{
cout << "C++学科视频" << endl;
}
};
void test01()
{
//Java页面
cout << "Java下载视频页面如下: " << endl;
Java ja;
ja.header();
ja.footer();
ja.left();
ja.content();
cout << "--------------------" << endl;
//Python页面
cout << "Python下载视频页面如下: " << endl;
Python py;
py.header();
py.footer();
py.left();
py.content();
cout << "--------------------" << endl;
//C++页面
cout << "C++下载视频页面如下: " << endl;
CPP cp;
cp.header();
cp.footer();
cp.left();
cp.content();
}
int main() {
test01();
return 0;
}
可以减少重复的代码
classA:public B;
A类称为子类或派生类
B类称为父类或基类
派生类中的成员,包含两大部分:
一类是从基类继承过来的,一类是自己增加的成员。
从基类继承过过来的表现其共性,而新增的成员体现了其个性。
2.2 继承方式
继承的语法:
class 子类 : 继承方式 父类
继承方式一共有三种:
- 公共继承 public
- 保护继承 protected
- 私有继承 private
class Base1
{
public:
int m_A;
protected:
int m_B;
private:
int m_C;
};
//公共继承
class Son1 :public Base1
{
public:
void func()
{
m_A; //可访问 public权限
m_B; //可访问 protected权限
//m_C; //不可访问
}
};
void myClass()
{
Son1 s1;
s1.m_A; //其他类只能访问到公共权限
}
class Base2
{
public:
int m_A;
protected:
int m_B;
private:
int m_C;
};
class Son2:protected Base2
{
public:
void func()
{
m_A; //可访问 protected权限
m_B; //可访问 protected权限
//m_C; //不可访问
}
};
void myClass2()
{
Son2 s;
//s.m_A; //不可访问
}
//私有继承
class Base3
{
public:
int m_A;
protected:
int m_B;
private:
int m_C;
};
class Son3:private Base3
{
public:
void func()
{
m_A; //可访问 private权限
m_B; //可访问 private权限
//m_C; //不可访问
}
};
class GrandSon3 :public Son3
{
public:
void func()
{
//Son3是私有继承,所以继承Son3的属性在GrandSon3中都无法访问到
//m_A;
//m_B;
//m_C;
}
};
2.3 继承中的对象模型
父类中私有成员也是被子类继承下去了,只是由编译器给隐藏后访问不到
2.4 继承中构造和析构顺序
子类继承父类后,当创建子类对象,也会调用父类的构造函数
问题:父类和子类的构造和析构顺序是谁先谁后?
class Base
{
public:
Base()
{
cout << "Base构造函数!" << endl;
}
~Base()
{
cout << "Base析构函数!" << endl;
}
};
class Son : public Base
{
public:
Son()
{
cout << "Son构造函数!" << endl;
}
~Son()
{
cout << "Son析构函数!" << endl;
}
};
void test01()
{
//继承中 先调用父类构造函数,再调用子类构造函数,析构顺序与构造相反
Son s;
}
int main() {
test01();
return 0;
}
继承中先调用父类构造函数,再调用子类构造函数,析构顺序与构造相反
2.5 继承同名成员处理方式
问题:当子类与父类出现同名的成员,如何通过子类对象,访问到子类或父类中同名的数据呢?
- 访问子类同名成员 直接访问即可
- 访问父类同名成员 需要加作用域
加作用域也就是s.m_a=xxx
s.Base::m_a=xxx
class Base {
public:
Base()
{
m_A = 100;
}
void func()
{
cout << "Base - func()调用" << endl;
}
void func(int a)
{
cout << "Base - func(int a)调用" << endl;
}
public:
int m_A;
};
class Son : public Base {
public:
Son()
{
m_A = 200;
}
//当子类与父类拥有同名的成员函数,子类会隐藏父类中所有版本的同名成员函数
//如果想访问父类中被隐藏的同名成员函数,需要加父类的作用域
void func()
{
cout << "Son - func()调用" << endl;
}
public:
int m_A;
};
void test01()
{
Son s;
cout << "Son下的m_A = " << s.m_A << endl;
cout << "Base下的m_A = " << s.Base::m_A << endl;
s.func();
s.Base::func();
s.Base::func(10);
}
int main() {
test01();
return EXIT_SUCCESS;
}
子类对象可以直接访问到子类中同名成员
子类对象加作用域可以访问到父类同名成员
当子类与父类拥有同名的成员函数,子类会隐藏父类中同名成员函数,加作用域可以访问父类中同名函数
2.6 继承同名静态成员处理方式
问题:继承中同名的静态成员在子类对象上如何进行访问?
静态成员和非静态成员出现同名,处理方式一致
- 访问子类同名成员 直接访问即可
- 访问父类同名成员 需要加作用域
2.7 多继承语法
C++允许一个类继承多个类
语法:
class 子类 :继承方式 父类1 , 继承方式 父类2...
多继承可能会引发父类中有同名成员出现,需要加作用域区分
C++实际开发中不建议用多继承
class Base1 {
public:
Base1()
{
m_A = 100;
}
public:
int m_A;
};
class Base2 {
public:
Base2()
{
m_A = 200; //开始是m_B 不会出问题,但是改为mA就会出现不明确
}
public:
int m_A;
};
//语法:class 子类:继承方式 父类1 ,继承方式 父类2
class Son : public Base2, public Base1
{
public:
Son()
{
m_C = 300;
m_D = 400;
}
public:
int m_C;
int m_D;
};
//多继承容易产生成员同名的情况
//通过使用类名作用域可以区分调用哪一个基类的成员
void test01()
{
Son s;
cout << "sizeof Son = " << sizeof(s) << endl;
cout << s.Base1::m_A << endl;
cout << s.Base2::m_A << endl;
}
int main() {
test01();
return 0;
}
多继承中如果父类中出现了同名情况,子类使用时候要加作用域
2.8 菱形继承
菱形继承概念:
两个派生类继承同一个基类
又有某个类同时继承者两个派生类
这种继承被称为菱形继承,或者钻石继承
菱形继承问题:
- 羊继承了动物的数据,驼同样继承了动物的数据,当草泥马使用数据时,就会产生二义性。
-
草泥马继承自动物的数据继承了两份,其实我们应该清楚,这份数据我们只需要一份就可以
函数前面加上virtual关键字,就会变成虚函数,那么编译器在编译的时候就不能确定函数调用了。
总结:
- 菱形继承带来的主要问题是子类继承两份相同的数据,导致资源浪费以及毫无意义
- 利用虚继承可以解决菱形继承问题
3 多态
3.1 基本概念
多态分为两类
- 静态多态: 函数重载 和 运算符重载属于静态多态,复用函数名
- 动态多态: 派生类和虚函数实现运行时多态
静态多态和动态多态区别:
- 静态多态的函数地址早绑定 - 编译阶段确定函数地址
- 动态多态的函数地址晚绑定 - 运行阶段确定函数地址
多态满足条件:
- 有继承关系
- 子类重写父类中的虚函数
多态使用:
父类指针或引用指向子类对象
class Animal
{
public:
//Speak函数就是虚函数
//函数前面加上virtual关键字,变成虚函数,那么编译器在编译的时候就不能确定函数调用了。
virtual void speak()
{
cout << "动物在说话" << endl;
}
};
class Cat :public Animal
{
public:
void speak()
{
cout << "小猫在说话" << endl;
}
};
class Dog :public Animal
{
public:
void speak()
{
cout << "小狗在说话" << endl;
}
};
//我们希望传入什么对象,那么就调用什么对象的函数
//如果函数地址在编译阶段就能确定,那么静态联编
//如果函数地址在运行阶段才能确定,就是动态联编
void DoSpeak(Animal & animal)
{
animal.speak();
}
//
//多态满足条件:
//1、有继承关系
//2、子类重写父类中的虚函数
//多态使用:
//父类指针或引用指向子类对象
void test01()
{
Cat cat;
DoSpeak(cat);
Dog dog;
DoSpeak(dog);
}
int main() {
test01();
return 0;
}
重写:函数返回值类型 函数名 参数列表 完全一致称为重写
3.2 多态案例-计算器类
分别利用普通写法和多态技术,设计实现两个操作数进行运算的计算器类
优点:
- 代码组织结构清晰
- 可读性强
- 利于前期和后期的扩展以及维护
//普通实现
class Calculator {
public:
int getResult(string oper)
{
if (oper == "+") {
return m_Num1 + m_Num2;
}
else if (oper == "-") {
return m_Num1 - m_Num2;
}
else if (oper == "*") {
return m_Num1 * m_Num2;
}
//如果要提供新的运算,需要修改源码
}
public:
int m_Num1;
int m_Num2;
};
void test01()
{
//普通实现测试
Calculator c;
c.m_Num1 = 10;
c.m_Num2 = 10;
cout << c.m_Num1 << " + " << c.m_Num2 << " = " << c.getResult("+") << endl;
cout << c.m_Num1 << " - " << c.m_Num2 << " = " << c.getResult("-") << endl;
cout << c.m_Num1 << " * " << c.m_Num2 << " = " << c.getResult("*") << endl;
}
//多态实现
//抽象计算器类
//多态优点:代码组织结构清晰,可读性强,利于前期和后期的扩展以及维护
class AbstractCalculator
{
public :
virtual int getResult()
{
return 0;
}
int m_Num1;
int m_Num2;
};
//加法计算器
class AddCalculator :public AbstractCalculator
{
public:
int getResult()
{
return m_Num1 + m_Num2;
}
};
//减法计算器
class SubCalculator :public AbstractCalculator
{
public:
int getResult()
{
return m_Num1 - m_Num2;
}
};
//乘法计算器
class MulCalculator :public AbstractCalculator
{
public:
int getResult()
{
return m_Num1 * m_Num2;
}
};
void test02()
{
//创建加法计算器
AbstractCalculator *abc = new AddCalculator;
abc->m_Num1 = 10;
abc->m_Num2 = 10;
cout << abc->m_Num1 << " + " << abc->m_Num2 << " = " << abc->getResult() << endl;
delete abc; //用完了记得销毁
//创建减法计算器
abc = new SubCalculator;
abc->m_Num1 = 10;
abc->m_Num2 = 10;
cout << abc->m_Num1 << " - " << abc->m_Num2 << " = " << abc->getResult() << endl;
delete abc;
//创建乘法计算器
abc = new MulCalculator;
abc->m_Num1 = 10;
abc->m_Num2 = 10;
cout << abc->m_Num1 << " * " << abc->m_Num2 << " = " << abc->getResult() << endl;
delete abc;
}
int main() {
//test01();
test02();
return 0;
}
3.3 纯虚函数和抽象类
在多态中,通常父类中虚函数的实现是毫无意义的,主要都是调用子类重写的内容
因此可以将虚函数改为纯虚函数
纯虚函数语法:
virtual 返回值类型 函数名 (参数列表)= 0 ;
当类中有了纯虚函数,这个类也称为抽象类
抽象类特点:
- 无法实例化对象
- 子类必须重写抽象类中的纯虚函数,否则也属于抽象类
class Base
{
public:
//纯虚函数
//类中只要有一个纯虚函数就称为抽象类
//抽象类无法实例化对象
//子类必须重写父类中的纯虚函数,否则也属于抽象类
virtual void func() = 0;
};
class Son :public Base
{
public:
virtual void func()
{
cout << "func调用" << endl;
};
};
void test01()
{
Base * base = NULL;
//base = new Base; // 错误,抽象类无法实例化对象
base = new Son;
base->func();
delete base;//记得销毁
}
int main() {
test01();
return 0;
}
3.4 多态案例-制作饮品
制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料
利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶
//抽象制作饮品
class AbstractDrinking {
public:
//烧水
virtual void Boil() = 0;
//冲泡
virtual void Brew() = 0;
//倒入杯中
virtual void PourInCup() = 0;
//加入辅料
virtual void PutSomething() = 0;
//规定流程
void MakeDrink() {
Boil();
Brew();
PourInCup();
PutSomething();
}
};
//制作咖啡
class Coffee : public AbstractDrinking {
public:
//烧水
virtual void Boil() {
cout << "煮农夫山泉!" << endl;
}
//冲泡
virtual void Brew() {
cout << "冲泡咖啡!" << endl;
}
//倒入杯中
virtual void PourInCup() {
cout << "将咖啡倒入杯中!" << endl;
}
//加入辅料
virtual void PutSomething() {
cout << "加入牛奶!" << endl;
}
};
//制作茶水
class Tea : public AbstractDrinking {
public:
//烧水
virtual void Boil() {
cout << "煮自来水!" << endl;
}
//冲泡
virtual void Brew() {
cout << "冲泡茶叶!" << endl;
}
//倒入杯中
virtual void PourInCup() {
cout << "将茶水倒入杯中!" << endl;
}
//加入辅料
virtual void PutSomething() {
cout << "加入枸杞!" << endl;
}
};
//业务函数
void DoWork(AbstractDrinking* drink) {
drink->MakeDrink();
delete drink;
}
void test01() {
DoWork(new Coffee);
cout << "--------------" << endl;
DoWork(new Tea);
}
int main() {
test01();
return 0;
}
3.5 虚析构和纯虚析构
多态使用时,如果子类中有属性开辟到堆区,那么父类指针在释放时无法调用到子类的析构代码
解决方式:将父类中的析构函数改为虚析构或者纯虚析构
虚析构和纯虚析构共性:
- 可以解决父类指针释放子类对象
- 都需要有具体的函数实现
虚析构和纯虚析构区别:
- 如果是纯虚析构,该类属于抽象类,无法实例化对象
虚析构语法:
virtual ~类名(){}
纯虚析构语法:
virtual ~类名() = 0;
类名::~类名(){}
class Animal {
public:
Animal()
{
cout << "Animal 构造函数调用!" << endl;
}
virtual void Speak() = 0;
//析构函数加上virtual关键字,变成虚析构函数
//virtual ~Animal()
//{
// cout << "Animal虚析构函数调用!" << endl;
//}
virtual ~Animal() = 0;
};
Animal::~Animal()
{
cout << "Animal 纯虚析构函数调用!" << endl;
}
//和包含普通纯虚函数的类一样,包含了纯虚析构函数的类也是一个抽象类。不能够被实例化。
class Cat : public Animal {
public:
Cat(string name)
{
cout << "Cat构造函数调用!" << endl;
m_Name = new string(name);
}
virtual void Speak()
{
cout << *m_Name << "小猫在说话!" << endl;
}
~Cat()
{
cout << "Cat析构函数调用!" << endl;
if (this->m_Name != NULL) {
delete m_Name;
m_Name = NULL;
}
}
public:
string *m_Name;
};
void test01()
{
Animal *animal = new Cat("Tom");
animal->Speak();
//通过父类指针去释放,会导致子类对象可能清理不干净,造成内存泄漏
//怎么解决?给基类增加一个虚析构函数
//虚析构函数就是用来解决通过父类指针释放子类对象
delete animal;
}
int main() {
test01();
return 0;
}
1. 虚析构或纯虚析构就是用来解决通过父类指针释放子类对象
2. 如果子类中没有堆区数据,可以不写为虚析构或纯虚析构
3. 拥有纯虚析构函数的类也属于抽象类
3.6 多态案例-电脑组装
电脑主要组成部件为 CPU(用于计算),显卡(用于显示),内存条(用于存储)
将每个零件封装出抽象基类,并且提供不同的厂商生产不同的零件,例如Intel厂商和Lenovo厂商
创建电脑类提供让电脑工作的函数,并且调用每个零件工作的接口
测试时组装三台不同的电脑进行工作
#include<iostream>
using namespace std;
//抽象CPU类
class CPU
{
public:
//抽象的计算函数
virtual void calculate() = 0;
};
//抽象显卡类
class VideoCard
{
public:
//抽象的显示函数
virtual void display() = 0;
};
//抽象内存条类
class Memory
{
public:
//抽象的存储函数
virtual void storage() = 0;
};
//电脑类
class Computer
{
public:
Computer(CPU * cpu, VideoCard * vc, Memory * mem)
{
m_cpu = cpu;
m_vc = vc;
m_mem = mem;
}
//提供工作的函数
void work()
{
//让零件工作起来,调用接口
m_cpu->calculate();
m_vc->display();
m_mem->storage();
}
//提供析构函数 释放3个电脑零件
~Computer()
{
//释放CPU零件
if (m_cpu != NULL)
{
delete m_cpu;
m_cpu = NULL;
}
//释放显卡零件
if (m_vc != NULL)
{
delete m_vc;
m_vc = NULL;
}
//释放内存条零件
if (m_mem != NULL)
{
delete m_mem;
m_mem = NULL;
}
}
private:
CPU * m_cpu; //CPU的零件指针
VideoCard * m_vc; //显卡零件指针
Memory * m_mem; //内存条零件指针
};
//具体厂商
//Intel厂商
class IntelCPU :public CPU
{
public:
virtual void calculate()
{
cout << "Intel的CPU开始计算了!" << endl;
}
};
class IntelVideoCard :public VideoCard
{
public:
virtual void display()
{
cout << "Intel的显卡开始显示了!" << endl;
}
};
class IntelMemory :public Memory
{
public:
virtual void storage()
{
cout << "Intel的内存条开始存储了!" << endl;
}
};
//Lenovo厂商
class LenovoCPU :public CPU
{
public:
virtual void calculate()
{
cout << "Lenovo的CPU开始计算了!" << endl;
}
};
class LenovoVideoCard :public VideoCard
{
public:
virtual void display()
{
cout << "Lenovo的显卡开始显示了!" << endl;
}
};
class LenovoMemory :public Memory
{
public:
virtual void storage()
{
cout << "Lenovo的内存条开始存储了!" << endl;
}
};
void test01()
{
//第一台电脑零件
CPU * intelCpu = new IntelCPU;
VideoCard * intelCard = new IntelVideoCard;
Memory * intelMem = new IntelMemory;
cout << "第一台电脑开始工作:" << endl;
//创建第一台电脑
Computer * computer1 = new Computer(intelCpu, intelCard, intelMem);
computer1->work();
delete computer1;
cout << "-----------------------" << endl;
cout << "第二台电脑开始工作:" << endl;
//第二台电脑组装
Computer * computer2 = new Computer(new LenovoCPU, new LenovoVideoCard, new LenovoMemory);;
computer2->work();
delete computer2;
cout << "-----------------------" << endl;
cout << "第三台电脑开始工作:" << endl;
//第三台电脑组装
Computer * computer3 = new Computer(new LenovoCPU, new IntelVideoCard, new LenovoMemory);;
computer3->work();
delete computer3;
}