ES-Hadoop是Elasticsearch推出的专门用于对接Hadoop生态的工具,可以让数据在Elasticsearch和Hadoop之间双向移动,无缝衔接Elasticsearch与Hadoop服务,充分使用Elasticsearch的快速搜索及Hadoop批处理能力,实现交互式数据处理。本文介绍如何通过ES-Hadoop实现Hadoop的Hive服务读写Elasticsearch数据。
Hadoop生态的优势是处理大规模数据集,但是其缺点也很明显,就是当用于交互式分析时,查询时延会比较长。而Elasticsearch擅长于交互式分析,对于很多查询类型,特别是对于Ad-hoc查询(即席查询),可以达到秒级。ES-Hadoop的推出提供了一种组合两者优势的可能性。使用ES-Hadoop,您只需要对代码进行很小的改动,即可快速处理存储在Elasticsearch中的数据,并且能够享受到Elasticsearch带来的加速效果。
ES-Hadoop的原理是将Elasticsearch作为MR、Spark或Hive等数据处理引擎的数据源,在计算存储分离的架构中扮演存储的角色。这和 MR、Spark或Hive的数据源并无差异,但相对于这些数据源,Elasticsearch具有更快的数据选择过滤能力。这种能力正是分析引擎最为关键的能力之一。
阿里云Elasticsearch兼容开源Elasticsearch的功能,以及Security、Machine Learning、Graph、APM等商业功能,致力于数据分析、数据搜索等场景服务。支持5.5.3、6.3.2、6.7.0、6.8.0和7.4.0等版本,并提供了商业插件X-Pack服务。在开源Elasticsearch的基础上提供企业级权限管控、安全监控告警、自动报表生成等功能。本文使用阿里云Elasticsearch为您演示,单击此处即可免费试用。
操作流程
-
创建同一专有网络下的阿里云Elasticsearch和E-MapReduce(以下简称EMR)实例、关闭Elasticsearch实例的自动创建索引功能并创建索引和Mapping、下载与Elasticsearch实例版本一致的ES-Hadoop安装包。
-
[步骤一:上传ES-Hadoop JAR包至HDFS](#步骤一:上传ES-Hadoop JAR包至HDFS)
将已下载的ES-Hadoop安装包上传至EMR Master节点的HDFS目录下。
-
创建Hive外表,与Elas