【线性代数】MIT Linear Algebra Lecture 3: Multiplication and inverse matrices

fb078286420893a209ce978db908fa3b-1
Author| Rickyの水果摊

Time | 2022.9.3


Lecture 3: Multiplication and inverse matrices

Lecture Info
  1. Instructor: Prof. Gilbert Strang

  2. Course Number: 18.06

  3. Topics: Linear Algebra

  4. Official Lecture Resource: Resource Index of Linear Algebra

Excellent Notes on GitHub

There are some classic, excellent notes from other authors on GitHub, wihch I highly recommend you to star ⭐️ and read 📖

notes-linear-algebra (A systematic notes written in Chinese)

The-Art-of-Linear-Algebra (Focus on visualization of important concept of Linear Algebra)

Video Link

Lecture 3: Multiplication and inverse matrices (bilibili)

Lecture 3: Multiplication and inverse matrices (YouTube)

Key Points
  1. 4 ways to understand matrix multiplication

  2. matrix inverses

  3. magic of Guass - Jordan Guess

Active Recall Questions
  1. What’s the underlying fundamentals behind 4 ways of matrix multiplication ? (Hint: draw the multiplication pictures)
  2. When we talk about A − 1 A^{-1} A1 , what’s the premise of A A A ? (Hint: size of A, invertibility) ❗️
  3. When is a square matrix not invertible?
  4. If A , B A,B A,B are inverseble, how to deduce the formula ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1 ?
  5. If A , B A,B A,B are inverseble, how to deduce the formula ( A B ) T = B − T A − T (AB)^{T}=B^{- T}A^{- T} (AB)T=BTAT ?
  6. How to determine A − 1 A^{-1} A1 ? Can you replay the process of Guass - Jordan guess ? Why we can determine A − 1 A^{-1} A1 by Guass - Jordan guess ?
Answer
  1. Figures below are from kenjihiranabe 's excellent repository The-Art-of-Linear-Algebra (Which I highly recommend you to star ⭐️)image-20220902115309171

  2. A A A must be an invertible square matrix. (or non-singular matrix)

  3. A n ∗ n A_{n*n} Ann have n pivots / r a n k ( A ) = n rank(A)=n rank(A)=n / all the column vectors in A A A are independent

  4. Here is the derivation:

    1. A B AB AB
    2. B − 1 A − 1 ( A B ) = B − 1 ( A − 1 A ) B = B − 1 I B = B − 1 B = I B^{-1}A^{-1}(AB)=B^{-1}(A^{-1}A)B=B^{-1}IB=B^{-1}B=I B1A1(AB)=B1(A1A)B=B1IB=B1B=I
    3. ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1
  5. We know on the one hand that ( A B ) j i T = ( A B ) i j T , (AB)_{ji}^T=(AB)_{ij}^T, (AB)jiT=(AB)ijT, hence
    ( A B ) i j T = ( A B ) j i = ∑ k = 1 n a j k b k i (A B)_{i j}^{T}=(A B)_{j i}=\sum_{k=1}^{n} a_{j k} b_{k i} (AB)ijT=(AB)ji=k=1najkbki
    on the other hand
    ( B T A T ) i j = ∑ k = 1 n b i k T a k j T = ∑ k = 1 n b k i a j k = ∑ k = 1 n a j k b k i \left(B^{T} A^{T}\right)_{i j}=\sum_{k=1}^{n} b_{i k}^{T} a_{k j}^{T}=\sum_{k=1}^{n} b_{k i} a_{j k}=\sum_{k=1}^{n} a_{j k} b_{k i} (BTAT)ij=k=1nbikTakjT=k=1nbkiajk=k=1najkbki
    so, since ( A B ) i j T = ( B T A T ) i j (A B)_{i j}^{T}=\left(B^{T} A^{T}\right)_{i j} (AB)ijT=(BTAT)ij for all i = 1 , … m i=1,\dots m i=1,m and j = 1 , … n j=1,\dots n j=1,n we have
    ( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT

  6. [ A ∣ I ] = > [ I ∣ A − 1 ] \begin{bmatrix} A|I \end{bmatrix}=>\begin{bmatrix} I|A^{-1}\end{bmatrix} [AI]=>[IA1]

    1. When we do row elimination, we are actually multiply a sets of elementary matrices E n ∗ n . . . E 31 E 21 = E f i n a l E_{n*n}...E_{31}E_{21}=E_{final} Enn...E31E21=Efinal to [ A ∣ I ] \begin{bmatrix} A|I \end{bmatrix} [AI].
    2. We get [ E f i n a l × A ∣ E f i n a l × I ] = [ I ∣ ? ] \begin{bmatrix} E_{final} \times A|E_{final} \times I \end{bmatrix}=\begin{bmatrix} I|?\end{bmatrix} [Efinal×AEfinal×I]=[I?]
    3. E f i n a l × A = I = > E f i n a l = A − 1 E_{final} \times A=I=>E_{final}=A^{-1} Efinal×A=I=>Efinal=A1, at the same time E f i n a l × I = E f i n a l = ? = A − 1 E_{final} \times I = E_{final}=?=A^{-1} Efinal×I=Efinal=?=A1
    4. That the magic of Guass - Jordan guess

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值