
扩散模型
文章平均质量分 95
张小殊.
主要发文方向为深度学习、并行编程、大规模并行训练、模型推理优化,欢迎大家一起互相学习、交流,谢谢!
展开
-
基于Transformer结构的扩散模型综述
近年来,计算机科学领域的生成式扩散模型迅猛发展,成为人工智能领域的热门研究方向。这一类模型,如GPT系列,以其强大的语言理解和生成能力,成功地应用于自然语言处理、文本生成、机器翻译等多个领域。扩散模型通常使用一个基于卷积的U-Net网络用于学习噪声并对噪声进行预测,近一年来,越来愈多的研究开始探索基于Transformer的噪声预测网络,本文主要介绍了近年来的一些经典工作。原创 2024-02-02 11:26:52 · 3762 阅读 · 5 评论 -
轻量化/高效扩散模型文献综述
近年来,计算机科学领域的生成式扩散模型迅猛发展,成为人工智能领域的热门研究方向。这一类模型,如GPT系列,以其强大的语言理解和生成能力,成功地应用于自然语言处理、文本生成、机器翻译等多个领域。然而,随着模型规模的不断扩大和任务复杂性的提高,扩散模型在实时推理上面临着巨大的计算量挑战。本文主要介绍了应对这一挑战近年来的一些经典工作。原创 2024-01-19 10:16:05 · 3766 阅读 · 7 评论 -
扩散模型微调方法/文献综述
近年来,扩散模型近年来取得了迅速的发展。扩散模型被广泛应用于文本到图像生成、文本到视频生成、点云完成和生成等各种生成式任务上。然而,从头训练一个扩散模型往往涉及巨大的计算成本和时间投入,限制了其在实际应用中的广泛使用。为了克服这一挑战,研究者们开始关注如何在现有的通用扩散模型基础上,通过微调的方式,将模型专门适应特定的下游任务。微调的思想源于对预训练模型知识的有效重用,通过在具体任务上进行有针对性的调整,以适应不同的应用场景。原创 2024-01-15 10:15:17 · 3721 阅读 · 52 评论