深度优先搜索 DFS
回溯、剪枝
每一个DFS都对应一个搜索树
搜索顺序!!!
恢复现场
宽度优先搜索 BFS
可以搜到最短路
边权都是1的时候BFS
queue<--初始
while(queue 不空){
取front
扩展front
}
例题:走迷宫、八数码
如何记录路径:记录前一个点是那一个
对比DFS、BFS
DFS:数据结构:stack 空间:O(h) 不具有最短性
BFS:数据结构:queue 空间:O(2^h) 最短路概念,具有最短性
树与图的存储
树是一种特殊的图,与图的存储方式相同。
对于无向图中的边ab,存储两条有向边a->b, b->a。
因此我们可以只考虑有向图的存储。
(1) 邻接矩阵:g[a][b]
存储边a->b
不能存取重边
(2) 邻接表:
// 对于每个点k,开一个单链表,存储k所有可以走到的点。h[k]存储这个单链表的头结点
int h[N], e[N], ne[N], idx;
// 添加一条边a->b
void add(int a, int b)
{
e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}
// 初始化
idx = 0;
memset(h, -1, sizeof h);
树与图的遍历
时间复杂度 O(n+m)O(n+m), nn 表示点数,mm 表示边数
DFS
例题:树的重心
模板
int dfs(int u)
{
st[u] = true; // st[u] 表示点u已经被遍历过
for (int i = h[u]; i != -1; i = ne[i])
{
int j = e[i];
if (!st[j]) dfs(j);
}
}
BFS
模板
queue<int> q;
st[1] = true; // 表示1号点已经被遍历过
q.push(1);
while (q.size())
{
int t = q.front();
q.pop();
for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (!st[j])
{
st[j] = true; // 表示点j已经被遍历过
q.push(j);
}
}
}
拓扑排序
针对有向图
有向无环图一定存在拓扑序列 --> 拓扑图
一个有向无环图至少存在一个入度为零的点
拓扑序不唯一
入度、出度
抽屉原理
模板
时间复杂度 O(n+m)O(n+m), nn 表示点数,mm 表示边数
bool topsort()
{
int hh = 0, tt = -1;
// d[i] 存储点i的入度
for (int i = 1; i <= n; i ++ )
if (!d[i])
q[ ++ tt] = i;
while (hh <= tt)
{
int t = q[hh ++ ];
for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (-- d[j] == 0)
q[ ++ tt] = j;
}
}
// 如果所有点都入队了,说明存在拓扑序列;否则不存在拓扑序列。
return tt == n - 1;
}