uva1658
利用了分点法,如果直接跑流量为2最小费用流,有可能出现某个点出现两次,所以把2~v-1分为两个点中间连一条容量为1,费用为0的边,实操时可用2i,2i+1代替i点一个连入的边,一个连出的边。另外紫书上提示这是解决节点容量问题的通法,需要注意。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=2000+7;
const int inf=1e9;
struct edge
{
int from,to,cap,flow,cost;
edge(int from,int to,int cap,int flow=0,int cost=0):from(from),to(to),cap(cap),flow(flow),cost(cost){}
};
vector<int>mp[maxn];
vector<edge> edges;
void addedge(int from,int to,int cap,int flow=0,int cost=0)
{
edges.push_back(edge(from,to,cap,flow,cost));
edges.push_back(edge(to,from,0,-flow,-cost));
int m=edges.size();
mp[from].push_back(m-2);
mp[to].push_back(m-1);
}
int inq[maxn],d[maxn],p[maxn],a[maxn],cnt[maxn];
queue<int> op;
struct MCMF
{
int n,m,s,t;
void init(int n)
{
this->n=n;
for(int i=1;i<=n;i++) mp[i].clear();
edges.clear();
}
int spfa(int s,int t,int& flow,int& cost)
{
for(int i=1;i<=n;i++) d[i]=inf;
d[s]=0;p[s]=0;a[s]=inf;op.push(s);
memset(inq,0,sizeof(inq));
memset(cnt,0,sizeof(cnt));
while(!op.empty())
{
int x=op.front();op.pop();
inq[x]=0;
for(int i=0;i<mp[x].size();i++)
{
edge& e=edges[mp[x][i]];
if(e.cap>e.flow&&d[e.to]>d[x]+e.cost)
{
d[e.to]=d[x]+e.cost;
p[e.to]=mp[x][i];
a[e.to]=min(a[x],e.cap-e.flow);
if(!inq[e.to])
{
op.push(e.to);
inq[e.to]=1;
if(++cnt[e.to]>n) return -1;
}
}
}
}
if(d[t]==inf) return false;
flow+=a[t];
cost+=d[t]*a[t];
int u=t;
while(u!=s)
{
edges[p[u]].flow+=a[t];
edges[p[u]^1].flow-=a[t];
u=edges[p[u]].from;
}
return true;
}
int mincost(int s,int t)
{
int flow=0,cost=0,ok=1,flag;
while((flag=spfa(s,t,flow,cost))>0)
{
if(flag==-1)
{
ok=0;
break;
}
}
if(!ok)
{
//有负环
}
else return cost;//也可得到流量,可以利用引用传值。
}
};
int main()
{
int v,e;
// freopen("in.txt","r",stdin);
MCMF solve;
while(scanf("%d%d",&v,&e)==2)
{
solve.init(2*v+1);
for(int i=1;i<=e;i++)
{
int u,v,c;
scanf("%d%d%d",&u,&v,&c);
addedge(2*u+1,2*v,1,0,c);
}
for(int i=2;i<=v;i++)
{
addedge(2*i,2*i+1,1,0,0);
}
addedge(2,3,2,0,0);
addedge(2*v,2*v+1,2,0,0);
printf("%d\n",solve.mincost(2,2*v+1));
}
return 0;
}