ChatGLM2-6B微调记录【1】

  • 参考github:https://github.com/liucongg/ChatGLM-Finetuning
  • 服务器配置:8块A100 80G
  • 从huggingface上下载chatglm2-6模型,此处提供一个好用的镜像网址:https://hf-mirror.com/THUDM/chatglm2-6b
  • 先下载依赖,然后运行命令行
CUDA_VISIBLE_DEVICES=4,5,6,7 deepspeed --master_port 21400 train.py --train_path data/spo_0.json --model_name_or_path chatglm2-6b/ --per_device_train_batch_size 1 --max_len 1560 --max_src_len 1024 --learning_rate 1e-4 --weight_decay 0.1 --num_train_epochs 2 --gradient_accumulation_steps 4 --warmup_ratio 0.1 --mode glm2 --lora_dim 16 --lora_alpha 64  --lora_dropout 0.1 --lora_module_name "query_key_value,dense_h_to_4h,dense_4h_to_h,dense" --seed 1234 --ds_file ds_zero2_no_offload.json --gradient_checkpointing --show_loss_step 10 --output_dir ./output-glm2
  • 问题及解决
    • 问题1:端口冲突,是因为在非特权端口(<1024)上绑定服务器套接字而没有管理员权限
    • 解决1:将原指定端口520换成一个21400解决
    • 问题2:ImportError: cannot import name ‘log’ from ‘torch.distributed.elastic.agent.server.api’
    • 解决2:运行pip install deepspeed --upgrade
    • 问题3:报错AttributeError: ‘ChatGLMTokenizer’ object has no attribute ‘tokenizer’
    • 解决3:降低 transformers 版本就可以跑起来了
      pip uninstall transformers pip install -i https://pypi.tuna.tsinghua.edu.cn/simple transformers==4.33.2
      或者去huggingface更新一下
      tokenization_chatglm.py
      这个文件就可以了(两种方法可以都试一下)
  • 命令行运行结果记录
[2024-11-08 17:06:02,050] [INFO] [real_accelerator.py:219:get_accelerator] Setting ds_accelerator to cuda (auto detect)
/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/transformers/utils/generic.py:311: FutureWarning: `torch.utils._pytree._register_pytree_node` is deprecated. Please use `torch.utils._pytree.register_pytree_node` instead.
  torch.utils._pytree._register_pytree_node(
2024-11-08 17:06:03.949823: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-11-08 17:06:04.070586: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2024-11-08 17:06:04.621454: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.8/lib64:/usr/local/cuda-11.8/lib64:
2024-11-08 17:06:04.621553: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.8/lib64:/usr/local/cuda-11.8/lib64:
2024-11-08 17:06:04.621563: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/transformers/utils/generic.py:311: FutureWarning: `torch.utils._pytree._register_pytree_node` is deprecated. Please use `torch.utils._pytree.register_pytree_node` instead.
  torch.utils._pytree._register_pytree_node(
[2024-11-08 17:06:05,017] [WARNING] [runner.py:215:fetch_hostfile] Unable to find hostfile, will proceed with training with local resources only.
Detected VISIBLE_DEVICES=4,5,6,7: setting --include=localhost:4,5,6,7
[2024-11-08 17:06:05,017] [INFO] [runner.py:607:main] cmd = /data/user23262833/.conda/envs/chatglm/bin/python -u -m deepspeed.launcher.launch --world_info=eyJsb2NhbGhvc3QiOiBbNCwgNSwgNiwgN119 --master_addr=127.0.0.1 --master_port=21400 --enable_each_rank_log=None train.py --train_path data/spo_0.json --model_name_or_path chatglm2-6b/ --per_device_train_batch_size 1 --max_len 1560 --max_src_len 1024 --learning_rate 1e-4 --weight_decay 0.1 --num_train_epochs 2 --gradient_accumulation_steps 4 --warmup_ratio 0.1 --mode glm2 --lora_dim 16 --lora_alpha 64 --lora_dropout 0.1 --lora_module_name query_key_value,dense_h_to_4h,dense_4h_to_h,dense --seed 1234 --ds_file ds_zero2_no_offload.json --gradient_checkpointing --show_loss_step 10 --output_dir ./output-glm2
[2024-11-08 17:06:06,382] [INFO] [real_accelerator.py:219:get_accelerator] Setting ds_accelerator to cuda (auto detect)
/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/transformers/utils/generic.py:311: FutureWarning: `torch.utils._pytree._register_pytree_node` is deprecated. Please use `torch.utils._pytree.register_pytree_node` instead.
  torch.utils._pytree._register_pytree_node(
2024-11-08 17:06:08.125986: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-11-08 17:06:08.243387: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2024-11-08 17:06:08.784327: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.8/lib64:/usr/local/cuda-11.8/lib64:
2024-11-08 17:06:08.784423: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.8/lib64:/usr/local/cuda-11.8/lib64:
2024-11-08 17:06:08.784431: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/transformers/utils/generic.py:311: FutureWarning: `torch.utils._pytree._register_pytree_node` is deprecated. Please use `torch.utils._pytree.register_pytree_node` instead.
  torch.utils._pytree._register_pytree_node(
[2024-11-08 17:06:09,168] [INFO] [launch.py:146:main] WORLD INFO DICT: {'localhost': [4, 5, 6, 7]}
[2024-11-08 17:06:09,168] [INFO] [launch.py:152:main] nnodes=1, num_local_procs=4, node_rank=0
[2024-11-08 17:06:09,168] [INFO] [launch.py:163:main] global_rank_mapping=defaultdict(<class 'list'>, {'localhost': [0, 1, 2, 3]})
[2024-11-08 17:06:09,168] [INFO] [launch.py:164:main] dist_world_size=4
[2024-11-08 17:06:09,168] [INFO] [launch.py:168:main] Setting CUDA_VISIBLE_DEVICES=4,5,6,7
[2024-11-08 17:06:09,187] [INFO] [launch.py:256:main] process 3443023 spawned with command: ['/data/user23262833/.conda/envs/chatglm/bin/python', '-u', 'train.py', '--local_rank=0', '--train_path', 'data/spo_0.json', '--model_name_or_path', 'chatglm2-6b/', '--per_device_train_batch_size', '1', '--max_len', '1560', '--max_src_len', '1024', '--learning_rate', '1e-4', '--weight_decay', '0.1', '--num_train_epochs', '2', '--gradient_accumulation_steps', '4', '--warmup_ratio', '0.1', '--mode', 'glm2', '--lora_dim', '16', '--lora_alpha', '64', '--lora_dropout', '0.1', '--lora_module_name', 'query_key_value,dense_h_to_4h,dense_4h_to_h,dense', '--seed', '1234', '--ds_file', 'ds_zero2_no_offload.json', '--gradient_checkpointing', '--show_loss_step', '10', '--output_dir', './output-glm2']
[2024-11-08 17:06:09,206] [INFO] [launch.py:256:main] process 3443024 spawned with command: ['/data/user23262833/.conda/envs/chatglm/bin/python', '-u', 'train.py', '--local_rank=1', '--train_path', 'data/spo_0.json', '--model_name_or_path', 'chatglm2-6b/', '--per_device_train_batch_size', '1', '--max_len', '1560', '--max_src_len', '1024', '--learning_rate', '1e-4', '--weight_decay', '0.1', '--num_train_epochs', '2', '--gradient_accumulation_steps', '4', '--warmup_ratio', '0.1', '--mode', 'glm2', '--lora_dim', '16', '--lora_alpha', '64', '--lora_dropout', '0.1', '--lora_module_name', 'query_key_value,dense_h_to_4h,dense_4h_to_h,dense', '--seed', '1234', '--ds_file', 'ds_zero2_no_offload.json', '--gradient_checkpointing', '--show_loss_step', '10', '--output_dir', './output-glm2']
[2024-11-08 17:06:09,227] [INFO] [launch.py:256:main] process 3443025 spawned with command: ['/data/user23262833/.conda/envs/chatglm/bin/python', '-u', 'train.py', '--local_rank=2', '--train_path', 'data/spo_0.json', '--model_name_or_path', 'chatglm2-6b/', '--per_device_train_batch_size', '1', '--max_len', '1560', '--max_src_len', '1024', '--learning_rate', '1e-4', '--weight_decay', '0.1', '--num_train_epochs', '2', '--gradient_accumulation_steps', '4', '--warmup_ratio', '0.1', '--mode', 'glm2', '--lora_dim', '16', '--lora_alpha', '64', '--lora_dropout', '0.1', '--lora_module_name', 'query_key_value,dense_h_to_4h,dense_4h_to_h,dense', '--seed', '1234', '--ds_file', 'ds_zero2_no_offload.json', '--gradient_checkpointing', '--show_loss_step', '10', '--output_dir', './output-glm2']
[2024-11-08 17:06:09,238] [INFO] [launch.py:256:main] process 3443026 spawned with command: ['/data/user23262833/.conda/envs/chatglm/bin/python', '-u', 'train.py', '--local_rank=3', '--train_path', 'data/spo_0.json', '--model_name_or_path', 'chatglm2-6b/', '--per_device_train_batch_size', '1', '--max_len', '1560', '--max_src_len', '1024', '--learning_rate', '1e-4', '--weight_decay', '0.1', '--num_train_epochs', '2', '--gradient_accumulation_steps', '4', '--warmup_ratio', '0.1', '--mode', 'glm2', '--lora_dim', '16', '--lora_alpha', '64', '--lora_dropout', '0.1', '--lora_module_name', 'query_key_value,dense_h_to_4h,dense_4h_to_h,dense', '--seed', '1234', '--ds_file', 'ds_zero2_no_offload.json', '--gradient_checkpointing', '--show_loss_step', '10', '--output_dir', './output-glm2']
[2024-11-08 17:06:10,688] [INFO] [real_accelerator.py:219:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2024-11-08 17:06:10,852] [INFO] [real_accelerator.py:219:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2024-11-08 17:06:10,894] [INFO] [real_accelerator.py:219:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2024-11-08 17:06:10,926] [INFO] [real_accelerator.py:219:get_accelerator] Setting ds_accelerator to cuda (auto detect)
/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/transformers/utils/generic.py:311: FutureWarning: `torch.utils._pytree._register_pytree_node` is deprecated. Please use `torch.utils._pytree.register_pytree_node` instead.
  torch.utils._pytree._register_pytree_node(
2024-11-08 17:06:12.439215: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/transformers/utils/generic.py:311: FutureWarning: `torch.utils._pytree._register_pytree_node` is deprecated. Please use `torch.utils._pytree.register_pytree_node` instead.
  torch.utils._pytree._register_pytree_node(
2024-11-08 17:06:12.522203: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/transformers/utils/generic.py:311: FutureWarning: `torch.utils._pytree._register_pytree_node` is deprecated. Please use `torch.utils._pytree.register_pytree_node` instead.
  torch.utils._pytree._register_pytree_node(
2024-11-08 17:06:12.572146: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/transformers/utils/generic.py:311: FutureWarning: `torch.utils._pytree._register_pytree_node` is deprecated. Please use `torch.utils._pytree.register_pytree_node` instead.
  torch.utils._pytree._register_pytree_node(
2024-11-08 17:06:12.601861: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-11-08 17:06:12.629245: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2024-11-08 17:06:12.641090: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F AVX512_VNNI FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-11-08 17:06:12.716181: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2024-11-08 17:06:12.747069: I tensorflow/core/util/port.cc:104] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2024-11-08 17:06:13.120827: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.8/lib64:/usr/local/cuda-11.8/lib64:
2024-11-08 17:06:13.120924: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.8/lib64:/usr/local/cuda-11.8/lib64:
2024-11-08 17:06:13.120932: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
2024-11-08 17:06:13.185514: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.8/lib64:/usr/local/cuda-11.8/lib64:
2024-11-08 17:06:13.185607: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.8/lib64:/usr/local/cuda-11.8/lib64:
2024-11-08 17:06:13.185615: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
2024-11-08 17:06:13.292935: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.8/lib64:/usr/local/cuda-11.8/lib64:
2024-11-08 17:06:13.293026: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.8/lib64:/usr/local/cuda-11.8/lib64:
2024-11-08 17:06:13.293034: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
2024-11-08 17:06:13.343458: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.8/lib64:/usr/local/cuda-11.8/lib64:
2024-11-08 17:06:13.343553: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda-11.8/lib64:/usr/local/cuda-11.8/lib64:
2024-11-08 17:06:13.343562: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/transformers/utils/generic.py:311: FutureWarning: `torch.utils._pytree._register_pytree_node` is deprecated. Please use `torch.utils._pytree.register_pytree_node` instead.
  torch.utils._pytree._register_pytree_node(
[2024-11-08 17:06:13,547] [INFO] [comm.py:652:init_distributed] cdb=None
[2024-11-08 17:06:13,547] [INFO] [comm.py:683:init_distributed] Initializing TorchBackend in DeepSpeed with backend nccl
/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/transformers/utils/generic.py:311: FutureWarning: `torch.utils._pytree._register_pytree_node` is deprecated. Please use `torch.utils._pytree.register_pytree_node` instead.
  torch.utils._pytree._register_pytree_node(
/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/transformers/utils/generic.py:311: FutureWarning: `torch.utils._pytree._register_pytree_node` is deprecated. Please use `torch.utils._pytree.register_pytree_node` instead.
  torch.utils._pytree._register_pytree_node(
/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/transformers/utils/generic.py:311: FutureWarning: `torch.utils._pytree._register_pytree_node` is deprecated. Please use `torch.utils._pytree.register_pytree_node` instead.
  torch.utils._pytree._register_pytree_node(
[2024-11-08 17:06:13,960] [INFO] [comm.py:652:init_distributed] cdb=None
[2024-11-08 17:06:14,088] [INFO] [comm.py:652:init_distributed] cdb=None
[2024-11-08 17:06:14,089] [INFO] [comm.py:652:init_distributed] cdb=None
tokenizer.pad_token: <unk>
tokenizer.eos_token: </s>
Loading checkpoint shards:   0%|                                                                             | 0/7 [00:00<?, ?it/s]/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/transformers/modeling_utils.py:488: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
  return torch.load(checkpoint_file, map_location=map_location)
/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/transformers/modeling_utils.py:488: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
  return torch.load(checkpoint_file, map_location=map_location)
Loading checkpoint shards:   0%|                                                                             | 0/7 [00:00<?, ?it/s]/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/transformers/modeling_utils.py:488: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
  return torch.load(checkpoint_file, map_location=map_location)
Loading checkpoint shards:   0%|                                                                             | 0/7 [00:00<?, ?it/s]/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/transformers/modeling_utils.py:488: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
  return torch.load(checkpoint_file, map_location=map_location)
Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████████████████| 7/7 [00:09<00:00,  1.34s/it]
Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████████████████| 7/7 [00:10<00:00,  1.43s/it]
Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████████████████| 7/7 [00:10<00:00,  1.44s/it]
Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████████████████| 7/7 [00:10<00:00,  1.44s/it]
the number of skipping data is 0
len(train_dataloader) = 361
len(train_dataset) = 1441
num_training_steps = 182
num_warmup_steps = 18
base_model.model.transformer.encoder.layers.0.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.0.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.0.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.0.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.0.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.0.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.0.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.0.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.1.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.1.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.1.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.1.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.1.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.1.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.1.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.1.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.2.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.2.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.2.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.2.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.2.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.2.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.2.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.2.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.3.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.3.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.3.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.3.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.3.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.3.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.3.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.3.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.4.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.4.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.4.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.4.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.4.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.4.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.4.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.4.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.5.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.5.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.5.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.5.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.5.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.5.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.5.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.5.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.6.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.6.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.6.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.6.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.6.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.6.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.6.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.6.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.7.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.7.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.7.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.7.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.7.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.7.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.7.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.7.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.8.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.8.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.8.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.8.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.8.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.8.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.8.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.8.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.9.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.9.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.9.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.9.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.9.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.9.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.9.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.9.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.10.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.10.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.10.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.10.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.10.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.10.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.10.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.10.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.11.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.11.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.11.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.11.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.11.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.11.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.11.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.11.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.12.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.12.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.12.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.12.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.12.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.12.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.12.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.12.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.13.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.13.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.13.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.13.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.13.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.13.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.13.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.13.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.14.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.14.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.14.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.14.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.14.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.14.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.14.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.14.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.15.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.15.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.15.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.15.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.15.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.15.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.15.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.15.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.16.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.16.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.16.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.16.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.16.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.16.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.16.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.16.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.17.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.17.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.17.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.17.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.17.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.17.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.17.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.17.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.18.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.18.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.18.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.18.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.18.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.18.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.18.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.18.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.19.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.19.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.19.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.19.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.19.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.19.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.19.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.19.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.20.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.20.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.20.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.20.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.20.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.20.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.20.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.20.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.21.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.21.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.21.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.21.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.21.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.21.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.21.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.21.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.22.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.22.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.22.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.22.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.22.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.22.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.22.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.22.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.23.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.23.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.23.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.23.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.23.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.23.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.23.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.23.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.24.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.24.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.24.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.24.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.24.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.24.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.24.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.24.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.25.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.25.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.25.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.25.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.25.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.25.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.25.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.25.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.26.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.26.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.26.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.26.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.26.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.26.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.26.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.26.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.27.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.27.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.27.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.27.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.27.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.27.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.27.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.27.mlp.dense_4h_to_h.lora_B.default.weight
trainable params: 29646848 || all params: 6273230848 || trainable%: 0.47259297032647635
[2024-11-08 17:07:29,871] [INFO] [logging.py:129:log_dist] [Rank 0] DeepSpeed info: version=0.15.3, git-hash=unknown, git-branch=unknown
[2024-11-08 17:07:29,872] [INFO] [comm.py:677:init_distributed] Distributed backend already initialized
[2024-11-08 17:07:29,872] [INFO] [config.py:733:__init__] Config mesh_device None world_size = 4
the number of skipping data is 0
base_model.model.transformer.encoder.layers.0.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.0.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.0.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.0.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.0.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.0.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.0.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.0.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.1.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.1.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.1.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.1.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.1.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.1.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.1.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.1.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.2.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.2.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.2.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.2.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.2.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.2.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.2.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.2.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.3.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.3.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.3.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.3.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.3.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.3.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.3.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.3.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.4.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.4.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.4.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.4.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.4.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.4.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.4.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.4.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.5.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.5.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.5.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.5.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.5.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.5.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.5.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.5.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.6.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.6.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.6.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.6.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.6.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.6.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.6.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.6.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.7.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.7.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.7.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.7.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.7.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.7.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.7.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.7.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.8.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.8.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.8.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.8.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.8.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.8.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.8.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.8.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.9.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.9.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.9.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.9.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.9.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.9.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.9.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.9.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.10.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.10.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.10.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.10.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.10.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.10.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.10.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.10.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.11.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.11.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.11.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.11.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.11.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.11.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.11.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.11.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.12.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.12.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.12.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.12.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.12.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.12.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.12.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.12.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.13.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.13.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.13.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.13.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.13.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.13.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.13.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.13.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.14.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.14.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.14.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.14.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.14.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.14.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.14.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.14.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.15.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.15.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.15.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.15.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.15.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.15.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.15.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.15.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.16.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.16.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.16.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.16.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.16.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.16.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.16.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.16.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.17.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.17.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.17.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.17.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.17.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.17.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.17.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.17.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.18.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.18.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.18.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.18.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.18.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.18.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.18.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.18.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.19.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.19.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.19.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.19.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.19.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.19.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.19.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.19.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.20.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.20.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.20.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.20.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.20.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.20.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.20.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.20.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.21.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.21.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.21.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.21.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.21.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.21.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.21.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.21.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.22.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.22.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.22.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.22.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.22.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.22.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.22.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.22.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.23.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.23.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.23.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.23.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.23.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.23.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.23.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.23.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.24.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.24.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.24.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.24.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.24.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.24.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.24.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.24.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.25.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.25.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.25.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.25.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.25.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.25.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.25.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.25.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.26.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.26.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.26.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.26.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.26.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.26.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.26.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.26.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.27.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.27.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.27.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.27.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.27.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.27.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.27.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.27.mlp.dense_4h_to_h.lora_B.default.weight
trainable params: 29646848 || all params: 6273230848 || trainable%: 0.47259297032647635
[2024-11-08 17:07:29,969] [INFO] [config.py:733:__init__] Config mesh_device None world_size = 4
the number of skipping data is 0
base_model.model.transformer.encoder.layers.0.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.0.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.0.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.0.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.0.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.0.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.0.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.0.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.1.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.1.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.1.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.1.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.1.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.1.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.1.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.1.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.2.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.2.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.2.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.2.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.2.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.2.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.2.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.2.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.3.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.3.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.3.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.3.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.3.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.3.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.3.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.3.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.4.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.4.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.4.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.4.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.4.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.4.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.4.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.4.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.5.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.5.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.5.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.5.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.5.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.5.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.5.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.5.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.6.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.6.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.6.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.6.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.6.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.6.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.6.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.6.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.7.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.7.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.7.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.7.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.7.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.7.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.7.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.7.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.8.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.8.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.8.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.8.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.8.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.8.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.8.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.8.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.9.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.9.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.9.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.9.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.9.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.9.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.9.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.9.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.10.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.10.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.10.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.10.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.10.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.10.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.10.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.10.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.11.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.11.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.11.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.11.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.11.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.11.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.11.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.11.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.12.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.12.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.12.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.12.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.12.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.12.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.12.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.12.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.13.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.13.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.13.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.13.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.13.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.13.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.13.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.13.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.14.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.14.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.14.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.14.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.14.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.14.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.14.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.14.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.15.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.15.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.15.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.15.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.15.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.15.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.15.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.15.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.16.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.16.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.16.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.16.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.16.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.16.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.16.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.16.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.17.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.17.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.17.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.17.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.17.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.17.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.17.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.17.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.18.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.18.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.18.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.18.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.18.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.18.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.18.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.18.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.19.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.19.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.19.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.19.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.19.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.19.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.19.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.19.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.20.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.20.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.20.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.20.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.20.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.20.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.20.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.20.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.21.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.21.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.21.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.21.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.21.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.21.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.21.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.21.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.22.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.22.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.22.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.22.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.22.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.22.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.22.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.22.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.23.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.23.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.23.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.23.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.23.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.23.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.23.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.23.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.24.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.24.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.24.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.24.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.24.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.24.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.24.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.24.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.25.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.25.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.25.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.25.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.25.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.25.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.25.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.25.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.26.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.26.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.26.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.26.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.26.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.26.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.26.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.26.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.27.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.27.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.27.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.27.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.27.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.27.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.27.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.27.mlp.dense_4h_to_h.lora_B.default.weight
trainable params: 29646848 || all params: 6273230848 || trainable%: 0.47259297032647635
[2024-11-08 17:07:29,990] [INFO] [config.py:733:__init__] Config mesh_device None world_size = 4
the number of skipping data is 0
base_model.model.transformer.encoder.layers.0.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.0.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.0.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.0.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.0.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.0.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.0.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.0.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.1.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.1.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.1.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.1.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.1.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.1.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.1.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.1.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.2.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.2.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.2.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.2.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.2.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.2.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.2.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.2.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.3.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.3.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.3.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.3.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.3.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.3.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.3.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.3.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.4.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.4.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.4.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.4.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.4.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.4.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.4.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.4.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.5.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.5.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.5.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.5.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.5.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.5.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.5.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.5.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.6.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.6.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.6.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.6.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.6.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.6.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.6.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.6.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.7.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.7.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.7.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.7.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.7.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.7.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.7.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.7.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.8.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.8.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.8.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.8.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.8.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.8.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.8.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.8.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.9.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.9.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.9.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.9.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.9.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.9.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.9.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.9.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.10.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.10.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.10.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.10.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.10.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.10.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.10.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.10.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.11.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.11.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.11.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.11.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.11.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.11.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.11.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.11.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.12.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.12.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.12.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.12.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.12.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.12.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.12.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.12.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.13.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.13.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.13.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.13.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.13.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.13.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.13.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.13.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.14.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.14.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.14.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.14.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.14.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.14.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.14.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.14.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.15.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.15.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.15.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.15.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.15.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.15.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.15.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.15.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.16.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.16.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.16.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.16.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.16.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.16.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.16.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.16.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.17.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.17.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.17.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.17.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.17.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.17.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.17.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.17.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.18.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.18.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.18.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.18.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.18.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.18.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.18.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.18.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.19.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.19.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.19.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.19.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.19.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.19.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.19.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.19.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.20.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.20.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.20.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.20.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.20.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.20.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.20.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.20.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.21.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.21.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.21.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.21.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.21.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.21.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.21.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.21.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.22.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.22.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.22.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.22.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.22.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.22.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.22.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.22.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.23.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.23.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.23.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.23.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.23.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.23.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.23.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.23.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.24.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.24.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.24.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.24.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.24.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.24.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.24.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.24.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.25.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.25.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.25.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.25.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.25.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.25.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.25.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.25.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.26.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.26.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.26.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.26.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.26.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.26.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.26.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.26.mlp.dense_4h_to_h.lora_B.default.weight
base_model.model.transformer.encoder.layers.27.self_attention.query_key_value.lora_A.default.weight
base_model.model.transformer.encoder.layers.27.self_attention.query_key_value.lora_B.default.weight
base_model.model.transformer.encoder.layers.27.self_attention.dense.lora_A.default.weight
base_model.model.transformer.encoder.layers.27.self_attention.dense.lora_B.default.weight
base_model.model.transformer.encoder.layers.27.mlp.dense_h_to_4h.lora_A.default.weight
base_model.model.transformer.encoder.layers.27.mlp.dense_h_to_4h.lora_B.default.weight
base_model.model.transformer.encoder.layers.27.mlp.dense_4h_to_h.lora_A.default.weight
base_model.model.transformer.encoder.layers.27.mlp.dense_4h_to_h.lora_B.default.weight
trainable params: 29646848 || all params: 6273230848 || trainable%: 0.47259297032647635
[2024-11-08 17:07:31,295] [INFO] [config.py:733:__init__] Config mesh_device None world_size = 4
[2024-11-08 17:07:34,800] [INFO] [logging.py:129:log_dist] [Rank 0] DeepSpeed Flops Profiler Enabled: False
Using /data/user23262833/.cache/torch_extensions/py38_cu121 as PyTorch extensions root...
Creating extension directory /data/user23262833/.cache/torch_extensions/py38_cu121/fused_adam...
Using /data/user23262833/.cache/torch_extensions/py38_cu121 as PyTorch extensions root...
Using /data/user23262833/.cache/torch_extensions/py38_cu121 as PyTorch extensions root...
Using /data/user23262833/.cache/torch_extensions/py38_cu121 as PyTorch extensions root...
Detected CUDA files, patching ldflags
Emitting ninja build file /data/user23262833/.cache/torch_extensions/py38_cu121/fused_adam/build.ninja...
/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/torch/utils/cpp_extension.py:1965: UserWarning: TORCH_CUDA_ARCH_LIST is not set, all archs for visible cards are included for compilation. 
If this is not desired, please set os.environ['TORCH_CUDA_ARCH_LIST'].
  warnings.warn(
Building extension module fused_adam...
Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)
[1/3] /usr/local/cuda-11.8/bin/nvcc --generate-dependencies-with-compile --dependency-output multi_tensor_adam.cuda.o.d -DTORCH_EXTENSION_NAME=fused_adam -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -I/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/deepspeed/ops/csrc/includes -I/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/deepspeed/ops/csrc/adam -isystem /data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/torch/include -isystem /data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/torch/include/torch/csrc/api/include -isystem /data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/torch/include/TH -isystem /data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/torch/include/THC -isystem /usr/local/cuda-11.8/include -isystem /data/user23262833/.conda/envs/chatglm/include/python3.8 -D_GLIBCXX_USE_CXX11_ABI=0 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr -gencode=arch=compute_80,code=compute_80 -gencode=arch=compute_80,code=sm_80 --compiler-options '-fPIC' -O3 -DVERSION_GE_1_1 -DVERSION_GE_1_3 -DVERSION_GE_1_5 -lineinfo --use_fast_math -gencode=arch=compute_80,code=sm_80 -gencode=arch=compute_80,code=compute_80 -DBF16_AVAILABLE -U__CUDA_NO_BFLOAT16_OPERATORS__ -U__CUDA_NO_BFLOAT162_OPERATORS__ -U__CUDA_NO_BFLOAT16_CONVERSIONS__ -std=c++17 -c /data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/deepspeed/ops/csrc/adam/multi_tensor_adam.cu -o multi_tensor_adam.cuda.o 
[2/3] c++ -MMD -MF fused_adam_frontend.o.d -DTORCH_EXTENSION_NAME=fused_adam -DTORCH_API_INCLUDE_EXTENSION_H -DPYBIND11_COMPILER_TYPE=\"_gcc\" -DPYBIND11_STDLIB=\"_libstdcpp\" -DPYBIND11_BUILD_ABI=\"_cxxabi1011\" -I/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/deepspeed/ops/csrc/includes -I/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/deepspeed/ops/csrc/adam -isystem /data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/torch/include -isystem /data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/torch/include/torch/csrc/api/include -isystem /data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/torch/include/TH -isystem /data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/torch/include/THC -isystem /usr/local/cuda-11.8/include -isystem /data/user23262833/.conda/envs/chatglm/include/python3.8 -D_GLIBCXX_USE_CXX11_ABI=0 -fPIC -std=c++17 -O3 -std=c++17 -g -Wno-reorder -DVERSION_GE_1_1 -DVERSION_GE_1_3 -DVERSION_GE_1_5 -DBF16_AVAILABLE -c /data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/deepspeed/ops/csrc/adam/fused_adam_frontend.cpp -o fused_adam_frontend.o 
[3/3] c++ fused_adam_frontend.o multi_tensor_adam.cuda.o -shared -L/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/torch/lib -lc10 -lc10_cuda -ltorch_cpu -ltorch_cuda -ltorch -ltorch_python -L/usr/local/cuda-11.8/lib64 -lcudart -o fused_adam.so
Loading extension module fused_adam...
Time to load fused_adam op: 22.472938776016235 seconds
Loading extension module fused_adam...
Loading extension module fused_adam...
Time to load fused_adam op: 22.532176971435547 seconds
Time to load fused_adam op: 22.533612728118896 seconds
[2024-11-08 17:07:57,341] [INFO] [logging.py:129:log_dist] [Rank 0] Using DeepSpeed Optimizer param name adamw as basic optimizer
[2024-11-08 17:07:57,341] [INFO] [logging.py:129:log_dist] [Rank 0] Removing param_group that has no 'params' in the basic Optimizer
Loading extension module fused_adam...
Time to load fused_adam op: 22.533676862716675 seconds
[2024-11-08 17:07:57,402] [INFO] [logging.py:129:log_dist] [Rank 0] DeepSpeed Basic Optimizer = FusedAdam
[2024-11-08 17:07:57,402] [INFO] [utils.py:59:is_zero_supported_optimizer] Checking ZeRO support for optimizer=FusedAdam type=<class 'deepspeed.ops.adam.fused_adam.FusedAdam'>
[2024-11-08 17:07:57,402] [INFO] [logging.py:129:log_dist] [Rank 0] Creating torch.float16 ZeRO stage 2 optimizer
[2024-11-08 17:07:57,402] [INFO] [stage_1_and_2.py:149:__init__] Reduce bucket size 500000000
[2024-11-08 17:07:57,402] [INFO] [stage_1_and_2.py:150:__init__] Allgather bucket size 500000000
[2024-11-08 17:07:57,402] [INFO] [stage_1_and_2.py:151:__init__] CPU Offload: False
[2024-11-08 17:07:57,402] [INFO] [stage_1_and_2.py:152:__init__] Round robin gradient partitioning: False
[2024-11-08 17:07:57,429] [WARNING] [lr_schedules.py:671:__init__] Using unknown warmup_type: cosine. The increasing function is set to default (log)
[2024-11-08 17:07:57,429] [WARNING] [lr_schedules.py:683:get_lr] Attempting to get learning rate from scheduler before it has started
  0%|                                                                                                   | 0/361 [00:00<?, ?batch/s][2024-11-08 17:07:57,469] [WARNING] [lr_schedules.py:671:__init__] Using unknown warmup_type: cosine. The increasing function is set to default (log)
[2024-11-08 17:07:57,469] [WARNING] [lr_schedules.py:683:get_lr] Attempting to get learning rate from scheduler before it has started
  0%|                                                                                                   | 0/361 [00:00<?, ?batch/s][2024-11-08 17:07:57,520] [WARNING] [lr_schedules.py:671:__init__] Using unknown warmup_type: cosine. The increasing function is set to default (log)
[2024-11-08 17:07:57,520] [WARNING] [lr_schedules.py:683:get_lr] Attempting to get learning rate from scheduler before it has started
  0%|                                                                                                   | 0/361 [00:00<?, ?batch/s][2024-11-08 17:07:57,647] [INFO] [utils.py:781:see_memory_usage] Before initializing optimizer states
[2024-11-08 17:07:57,648] [INFO] [utils.py:782:see_memory_usage] MA 11.74 GB         Max_MA 11.75 GB         CA 11.79 GB         Max_CA 12 GB 
[2024-11-08 17:07:57,648] [INFO] [utils.py:789:see_memory_usage] CPU Virtual Memory:  used = 71.46 GB, percent = 7.1%
[2024-11-08 17:07:57,774] [INFO] [utils.py:781:see_memory_usage] After initializing optimizer states
[2024-11-08 17:07:57,775] [INFO] [utils.py:782:see_memory_usage] MA 11.74 GB         Max_MA 11.77 GB         CA 11.81 GB         Max_CA 12 GB 
[2024-11-08 17:07:57,775] [INFO] [utils.py:789:see_memory_usage] CPU Virtual Memory:  used = 71.47 GB, percent = 7.1%
[2024-11-08 17:07:57,775] [INFO] [stage_1_and_2.py:544:__init__] optimizer state initialized
/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
  return fn(*args, **kwargs)
/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
  return fn(*args, **kwargs)
/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
  return fn(*args, **kwargs)
[2024-11-08 17:07:57,905] [INFO] [utils.py:781:see_memory_usage] After initializing ZeRO optimizer
[2024-11-08 17:07:57,905] [INFO] [utils.py:782:see_memory_usage] MA 11.74 GB         Max_MA 11.74 GB         CA 11.81 GB         Max_CA 12 GB 
[2024-11-08 17:07:57,905] [INFO] [utils.py:789:see_memory_usage] CPU Virtual Memory:  used = 71.73 GB, percent = 7.1%
[2024-11-08 17:07:57,907] [INFO] [logging.py:129:log_dist] [Rank 0] DeepSpeed Final Optimizer = DeepSpeedZeroOptimizer
[2024-11-08 17:07:57,907] [WARNING] [lr_schedules.py:671:__init__] Using unknown warmup_type: cosine. The increasing function is set to default (log)
[2024-11-08 17:07:57,907] [WARNING] [lr_schedules.py:683:get_lr] Attempting to get learning rate from scheduler before it has started
[2024-11-08 17:07:57,907] [INFO] [logging.py:129:log_dist] [Rank 0] DeepSpeed using configured LR scheduler = WarmupDecayLR
[2024-11-08 17:07:57,907] [INFO] [logging.py:129:log_dist] [Rank 0] DeepSpeed LR Scheduler = <deepspeed.runtime.lr_schedules.WarmupDecayLR object at 0x7f3f7f36bfd0>
[2024-11-08 17:07:57,907] [INFO] [logging.py:129:log_dist] [Rank 0] step=0, skipped=0, lr=[1e-05], mom=[(0.9, 0.95)]
[2024-11-08 17:07:57,910] [INFO] [config.py:999:print] DeepSpeedEngine configuration:
[2024-11-08 17:07:57,910] [INFO] [config.py:1003:print]   activation_checkpointing_config  {
    "partition_activations": false, 
    "contiguous_memory_optimization": false, 
    "cpu_checkpointing": false, 
    "number_checkpoints": null, 
    "synchronize_checkpoint_boundary": false, 
    "profile": false
}
[2024-11-08 17:07:57,910] [INFO] [config.py:1003:print]   aio_config ................... {'block_size': 1048576, 'queue_depth': 8, 'thread_count': 1, 'single_submit': False, 'overlap_events': True, 'use_gds': False}
[2024-11-08 17:07:57,910] [INFO] [config.py:1003:print]   amp_enabled .................. False
[2024-11-08 17:07:57,910] [INFO] [config.py:1003:print]   amp_params ................... False
[2024-11-08 17:07:57,910] [INFO] [config.py:1003:print]   autotuning_config ............ {
    "enabled": false, 
    "start_step": null, 
    "end_step": null, 
    "metric_path": null, 
    "arg_mappings": null, 
    "metric": "throughput", 
    "model_info": null, 
    "results_dir": "autotuning_results", 
    "exps_dir": "autotuning_exps", 
    "overwrite": true, 
    "fast": true, 
    "start_profile_step": 3, 
    "end_profile_step": 5, 
    "tuner_type": "gridsearch", 
    "tuner_early_stopping": 5, 
    "tuner_num_trials": 50, 
    "model_info_path": null, 
    "mp_size": 1, 
    "max_train_batch_size": null, 
    "min_train_batch_size": 1, 
    "max_train_micro_batch_size_per_gpu": 1.024000e+03, 
    "min_train_micro_batch_size_per_gpu": 1, 
    "num_tuning_micro_batch_sizes": 3
}
[2024-11-08 17:07:57,910] [INFO] [config.py:1003:print]   bfloat16_enabled ............. False
[2024-11-08 17:07:57,910] [INFO] [config.py:1003:print]   bfloat16_immediate_grad_update  False
[2024-11-08 17:07:57,910] [INFO] [config.py:1003:print]   checkpoint_parallel_write_pipeline  False
[2024-11-08 17:07:57,910] [INFO] [config.py:1003:print]   checkpoint_tag_validation_enabled  True
[2024-11-08 17:07:57,910] [INFO] [config.py:1003:print]   checkpoint_tag_validation_fail  False
[2024-11-08 17:07:57,910] [INFO] [config.py:1003:print]   comms_config ................. <deepspeed.comm.config.DeepSpeedCommsConfig object at 0x7f3f7f36b970>
[2024-11-08 17:07:57,910] [INFO] [config.py:1003:print]   communication_data_type ...... None
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   compression_config ........... {'weight_quantization': {'shared_parameters': {'enabled': False, 'quantizer_kernel': False, 'schedule_offset': 0, 'quantize_groups': 1, 'quantize_verbose': False, 'quantization_type': 'symmetric', 'quantize_weight_in_forward': False, 'rounding': 'nearest', 'fp16_mixed_quantize': False, 'quantize_change_ratio': 0.001}, 'different_groups': {}}, 'activation_quantization': {'shared_parameters': {'enabled': False, 'quantization_type': 'symmetric', 'range_calibration': 'dynamic', 'schedule_offset': 1000}, 'different_groups': {}}, 'sparse_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'row_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'head_pruning': {'shared_parameters': {'enabled': False, 'method': 'topk', 'schedule_offset': 1000}, 'different_groups': {}}, 'channel_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'layer_reduction': {'enabled': False}}
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   curriculum_enabled_legacy .... False
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   curriculum_params_legacy ..... False
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   data_efficiency_config ....... {'enabled': False, 'seed': 1234, 'data_sampling': {'enabled': False, 'num_epochs': 1000, 'num_workers': 0, 'curriculum_learning': {'enabled': False}}, 'data_routing': {'enabled': False, 'random_ltd': {'enabled': False, 'layer_token_lr_schedule': {'enabled': False}}}}
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   data_efficiency_enabled ...... False
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   dataloader_drop_last ......... False
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   disable_allgather ............ False
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   dump_state ................... False
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   dynamic_loss_scale_args ...... {'init_scale': 65536, 'scale_window': 100, 'delayed_shift': 2, 'consecutive_hysteresis': False, 'min_scale': 1}
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   eigenvalue_enabled ........... False
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   eigenvalue_gas_boundary_resolution  1
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   eigenvalue_layer_name ........ bert.encoder.layer
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   eigenvalue_layer_num ......... 0
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   eigenvalue_max_iter .......... 100
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   eigenvalue_stability ......... 1e-06
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   eigenvalue_tol ............... 0.01
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   eigenvalue_verbose ........... False
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   elasticity_enabled ........... False
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   flops_profiler_config ........ {
    "enabled": false, 
    "recompute_fwd_factor": 0.0, 
    "profile_step": 1, 
    "module_depth": -1, 
    "top_modules": 1, 
    "detailed": true, 
    "output_file": null
}
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   fp16_auto_cast ............... False
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   fp16_enabled ................. True
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   fp16_master_weights_and_gradients  False
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   global_rank .................. 0
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   grad_accum_dtype ............. None
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   gradient_accumulation_steps .. 4
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   gradient_clipping ............ 1.0
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   gradient_predivide_factor .... 1.0
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   graph_harvesting ............. False
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   hybrid_engine ................ enabled=False max_out_tokens=512 inference_tp_size=1 release_inference_cache=False pin_parameters=True tp_gather_partition_size=8
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   initial_dynamic_scale ........ 65536
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   load_universal_checkpoint .... False
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   loss_scale ................... 0
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   memory_breakdown ............. False
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   mics_hierarchial_params_gather  False
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   mics_shard_size .............. -1
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   monitor_config ............... tensorboard=TensorBoardConfig(enabled=False, output_path='', job_name='DeepSpeedJobName') comet=CometConfig(enabled=False, samples_log_interval=100, project=None, workspace=None, api_key=None, experiment_name=None, experiment_key=None, online=None, mode=None) wandb=WandbConfig(enabled=False, group=None, team=None, project='deepspeed') csv_monitor=CSVConfig(enabled=False, output_path='', job_name='DeepSpeedJobName')
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   nebula_config ................ {
    "enabled": false, 
    "persistent_storage_path": null, 
    "persistent_time_interval": 100, 
    "num_of_version_in_retention": 2, 
    "enable_nebula_load": true, 
    "load_path": null
}
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   optimizer_legacy_fusion ...... False
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   optimizer_name ............... adamw
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   optimizer_params ............. {'lr': 0.0001, 'betas': (0.9, 0.95), 'eps': 1e-08, 'weight_decay': 0.1}
[2024-11-08 17:07:57,911] [INFO] [config.py:1003:print]   pipeline ..................... {'stages': 'auto', 'partition': 'best', 'seed_layers': False, 'activation_checkpoint_interval': 0, 'pipe_partitioned': True, 'grad_partitioned': True}
[2024-11-08 17:07:57,912] [INFO] [config.py:1003:print]   pld_enabled .................. False
[2024-11-08 17:07:57,912] [INFO] [config.py:1003:print]   pld_params ................... False
[2024-11-08 17:07:57,912] [INFO] [config.py:1003:print]   prescale_gradients ........... False
[2024-11-08 17:07:57,912] [INFO] [config.py:1003:print]   scheduler_name ............... WarmupDecayLR
[2024-11-08 17:07:57,912] [INFO] [config.py:1003:print]   scheduler_params ............. {'last_batch_iteration': -1, 'total_num_steps': 182, 'warmup_min_lr': 1e-05, 'warmup_max_lr': 0.0001, 'warmup_num_steps': 18, 'warmup_type': 'cosine'}
[2024-11-08 17:07:57,912] [INFO] [config.py:1003:print]   seq_parallel_communication_data_type  torch.float32
[2024-11-08 17:07:57,912] [INFO] [config.py:1003:print]   sparse_attention ............. None
[2024-11-08 17:07:57,912] [INFO] [config.py:1003:print]   sparse_gradients_enabled ..... False
[2024-11-08 17:07:57,912] [INFO] [config.py:1003:print]   steps_per_print .............. 1
[2024-11-08 17:07:57,912] [INFO] [config.py:1003:print]   timers_config ................ enabled=True synchronized=True
[2024-11-08 17:07:57,912] [INFO] [config.py:1003:print]   train_batch_size ............. 16
[2024-11-08 17:07:57,912] [INFO] [config.py:1003:print]   train_micro_batch_size_per_gpu  1
[2024-11-08 17:07:57,912] [INFO] [config.py:1003:print]   use_data_before_expert_parallel_  False
[2024-11-08 17:07:57,912] [INFO] [config.py:1003:print]   use_node_local_storage ....... False
[2024-11-08 17:07:57,912] [INFO] [config.py:1003:print]   wall_clock_breakdown ......... False
[2024-11-08 17:07:57,912] [INFO] [config.py:1003:print]   weight_quantization_config ... None
[2024-11-08 17:07:57,912] [INFO] [config.py:1003:print]   world_size ................... 4
[2024-11-08 17:07:57,912] [INFO] [config.py:1003:print]   zero_allow_untested_optimizer  False
[2024-11-08 17:07:57,912] [INFO] [config.py:1003:print]   zero_config .................. stage=2 contiguous_gradients=True reduce_scatter=True reduce_bucket_size=500000000 use_multi_rank_bucket_allreduce=True allgather_partitions=True allgather_bucket_size=500000000 overlap_comm=False load_from_fp32_weights=True elastic_checkpoint=False offload_param=DeepSpeedZeroOffloadParamConfig(device='none', nvme_path=None, buffer_count=5, buffer_size=100000000, max_in_cpu=1000000000, pin_memory=False) offload_optimizer=DeepSpeedZeroOffloadOptimizerConfig(device='none', nvme_path=None, buffer_count=4, pin_memory=False, pipeline_read=False, pipeline_write=False, fast_init=False, ratio=1.0) sub_group_size=1000000000 cpu_offload_param=None cpu_offload_use_pin_memory=None cpu_offload=None prefetch_bucket_size=50000000 param_persistence_threshold=100000 model_persistence_threshold=9223372036854775807 max_live_parameters=1000000000 max_reuse_distance=1000000000 gather_16bit_weights_on_model_save=False use_all_reduce_for_fetch_params=False stage3_gather_fp16_weights_on_model_save=False ignore_unused_parameters=True legacy_stage1=False round_robin_gradients=False zero_hpz_partition_size=1 zero_quantized_weights=False zero_quantized_nontrainable_weights=False zero_quantized_gradients=False mics_shard_size=-1 mics_hierarchical_params_gather=False memory_efficient_linear=True pipeline_loading_checkpoint=False override_module_apply=True
[2024-11-08 17:07:57,912] [INFO] [config.py:1003:print]   zero_enabled ................. True
[2024-11-08 17:07:57,912] [INFO] [config.py:1003:print]   zero_force_ds_cpu_optimizer .. True
[2024-11-08 17:07:57,912] [INFO] [config.py:1003:print]   zero_optimization_stage ...... 2
[2024-11-08 17:07:57,912] [INFO] [config.py:989:print_user_config]   json = {
    "train_batch_size": 16, 
    "train_micro_batch_size_per_gpu": 1, 
    "steps_per_print": 1, 
    "zero_optimization": {
        "stage": 2, 
        "offload_param": {
            "device": "auto"
        }, 
        "offload_optimizer": {
            "device": "auto"
        }
    }, 
    "bf16": {
        "enabled": false
    }, 
    "fp16": {
        "enabled": true, 
        "loss_scale": 0, 
        "loss_scale_window": 100
    }, 
    "gradient_clipping": 1.0, 
    "prescale_gradients": false, 
    "wall_clock_breakdown": false, 
    "scheduler": {
        "type": "WarmupDecayLR", 
        "params": {
            "last_batch_iteration": -1, 
            "total_num_steps": 182, 
            "warmup_min_lr": 1e-05, 
            "warmup_max_lr": 0.0001, 
            "warmup_num_steps": 18, 
            "warmup_type": "cosine"
        }
    }, 
    "optimizer": {
        "type": "AdamW", 
        "params": {
            "lr": 0.0001, 
            "betas": [0.9, 0.95], 
            "eps": 1e-08, 
            "weight_decay": 0.1
        }
    }, 
    "gradient_accumulation_steps": 4
}
Beginning of Epoch 1/2, Total Micro Batches 361
  0%|                                                                                                   | 0/361 [00:00<?, ?batch/s]/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
  return fn(*args, **kwargs)
/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
  with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs):  # type: ignore[attr-defined]
/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
  with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs):  # type: ignore[attr-defined]
/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
  with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs):  # type: ignore[attr-defined]
  0%|| 1/361 [00:01<07:24,  1.23s/batch]/data/user23262833/.conda/envs/chatglm/lib/python3.8/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
  with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs):  # type: ignore[attr-defined]
  1%|| 4/361 [00:02<02:29,  2.39batch/s][2024-11-08 17:07:59,606] [INFO] [logging.py:129:log_dist] [Rank 0] step=1, skipped=0, lr=[1e-05], mom=[(0.9, 0.95)]
  2%|█▊                                                                                         | 7/361 [00:02<01:23,  4.23batch/s][2024-11-08 17:08:00,245] [INFO] [loss_scaler.py:190:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 65536, but hysteresis is 2. Reducing hysteresis to 1
  2%|██                                                                                         | 8/361 [00:02<01:14,  4.74batch/s][2024-11-08 17:08:00,245] [INFO] [logging.py:129:log_dist] [Rank 0] step=2, skipped=1, lr=[1e-05], mom=[(0.9, 0.95)]
  3%|██▋                                                                                       | 11/361 [00:03<01:01,  5.73batch/s][2024-11-08 17:08:00,888] [INFO] [logging.py:129:log_dist] [Rank 0] step=3, skipped=1, lr=[3.1583121991131835e-05], mom=[(0.9, 0.95)]
  3%|██▉                                                                                       | 12/361 [00:03<01:00,  5.80batch/s][2024-11-08 17:08:00,889] [INFO] [timer.py:264:stop] epoch=0/micro_step=12/global_step=3, RunningAvgSamplesPerSec=24.94289685931983, CurrSamplesPerSec=24.942857975123964, MemAllocated=11.85GB, MaxMemAllocated=13.15GB
  4%|███▋                                                                                      | 15/361 [00:03<00:57,  6.06batch/s][2024-11-08 17:08:01,537] [INFO] [loss_scaler.py:183:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 65536, reducing to 32768
[2024-11-08 17:08:01,537] [INFO] [logging.py:129:log_dist] [Rank 0] step=4, skipped=2, lr=[3.1583121991131835e-05], mom=[(0.9, 0.95)]
  4%|███▉                                                                                      | 16/361 [00:04<00:56,  6.07batch/s][2024-11-08 17:08:01,537] [INFO] [timer.py:264:stop] epoch=0/micro_step=16/global_step=4, RunningAvgSamplesPerSec=24.835147120484145, CurrSamplesPerSec=24.72828608625941, MemAllocated=11.84GB, MaxMemAllocated=13.15GB
  5%|████▋                                                                                     | 19/361 [00:04<00:54,  6.26batch/s][2024-11-08 17:08:02,172] [INFO] [logging.py:129:log_dist] [Rank 0] step=5, skipped=2, lr=[4.42084390044341e-05], mom=[(0.9, 0.95)]
  6%|████▉                                                                                     | 20/361 [00:04<00:55,  6.19batch/s][2024-11-08 17:08:02,172] [INFO] [timer.py:264:stop] epoch=0/micro_step=20/global_step=5, RunningAvgSamplesPerSec=24.9752069765532, CurrSamplesPerSec=25.260080148523734, MemAllocated=11.85GB, MaxMemAllocated=13.23GB
  6%|█████▋                                                                                    | 23/361 [00:05<00:53,  6.33batch/s][2024-11-08 17:08:02,806] [INFO] [logging.py:129:log_dist] [Rank 0] step=6, skipped=2, lr=[5.3166243982263665e-05], mom=[(0.9, 0.95)]
  7%|█████▉                                                                                    | 24/361 [00:05<00:54,  6.20batch/s][2024-11-08 17:08:02,807] [INFO] [timer.py:264:stop] epoch=0/micro_step=24/global_step=6, RunningAvgSamplesPerSec=25.054683771665495, CurrSamplesPerSec=25.296138375681792, MemAllocated=11.87GB, MaxMemAllocated=13.23GB
  7%|██████▋                                                                                   | 27/361 [00:05<00:54,  6.12batch/s][2024-11-08 17:08:03,479] [INFO] [logging.py:129:log_dist] [Rank 0] step=7, skipped=2, lr=[6.011445732659027e-05], mom=[(0.9, 0.95)]
  8%|██████▉                                                                                   | 28/361 [00:06<00:54,  6.14batch/s][2024-11-08 17:08:03,479] [INFO] [timer.py:264:stop] epoch=0/micro_step=28/global_step=7, RunningAvgSamplesPerSec=24.80362778508688, CurrSamplesPerSec=23.84774262275905, MemAllocated=11.86GB, MaxMemAllocated=13.23GB
  9%|███████▋                                                                                  | 31/361 [00:06<00:59,  5.54batch/s][2024-11-08 17:08:04,209] [INFO] [loss_scaler.py:183:update_scale] [deepspeed] OVERFLOW! Rank 0 Skipping step. Attempted loss scale: 32768, reducing to 16384
[2024-11-08 17:08:04,210] [INFO] [logging.py:129:log_dist] [Rank 0] step=8, skipped=3, lr=[6.011445732659027e-05], mom=[(0.9, 0.95)]
  9%|███████▉                                                                                  | 32/361 [00:06<00:56,  5.78batch/s][2024-11-08 17:08:04,210] [INFO] [timer.py:264:stop] epoch=0/micro_step=32/global_step=8, RunningAvgSamplesPerSec=24.27660825454828, CurrSamplesPerSec=21.945156691266938, MemAllocated=11.86GB, MaxMemAllocated=13.23GB
 10%|████████▋                                                                                 | 35/361 [00:07<00:55,  5.90batch/s][2024-11-08 17:08:04,875] [INFO] [logging.py:129:log_dist] [Rank 0] step=9, skipped=3, lr=[6.579156099556593e-05], mom=[(0.9, 0.95)]
 10%|████████▉                                                                                 | 36/361 [00:07<00:54,  6.01batch/s][2024-11-08 17:08:04,876] [INFO] [timer.py:264:stop] epoch=0/micro_step=36/global_step=9, RunningAvgSamplesPerSec=24.250528090425334, CurrSamplesPerSec=24.095180026910562, MemAllocated=11.86GB, MaxMemAllocated=13.51GB
 11%|█████████▋                                                                                | 39/361 [00:07<00:50,  6.33batch/s][2024-11-08 17:08:05,539] [INFO] [logging.py:129:log_dist] [Rank 0] step=10, skipped=3, lr=[7.059148375517367e-05], mom=[(0.9, 0.95)]
 11%|█████████▉                                                                                | 40/361 [00:08<00:55,  5.83batch/s][2024-11-08 17:08:05,539] [INFO] [timer.py:264:stop] epoch=0/micro_step=40/global_step=10, RunningAvgSamplesPerSec=24.24051542399338, CurrSamplesPerSec=24.17062108622753, MemAllocated=11.92GB, MaxMemAllocated=13.54GB
Epoch: 0, step: 40, global_step:10, loss: 2.80465087890625
step: 40-10-10
 12%|██████████▉                                                                               | 44/361 [00:08<00:50,  6.27batch/s][2024-11-08 17:08:06,154] [INFO] [logging.py:129:log_dist] [Rank 0] step=11, skipped=3, lr=[7.47493659733955e-05], mom=[(0.9, 0.95)]
[2024-11-08 17:08:06,154] [INFO] [timer.py:264:stop] epoch=0/micro_step=44/global_step=11, RunningAvgSamplesPerSec=24.434034837465752, CurrSamplesPerSec=26.100970947922384, MemAllocated=11.85GB, MaxMemAllocated=13.54GB
 13%|███████████▋                                                                              | 47/361 [00:09<00:49,  6.28batch/s][2024-11-08 17:08:06,804] [INFO] [logging.py:129:log_dist] [Rank 0] step=12, skipped=3, lr=[7.84168780088682e-05], mom=[(0.9, 0.95)]
 13%|███████████▉                                                                              | 48/361 [00:09<00:51,  6.09batch/s][2024-11-08 17:08:06,804] [INFO] [timer.py:264:stop] epoch=0/micro_step=48/global_step=12, RunningAvgSamplesPerSec=24.460144252051272, CurrSamplesPerSec=24.697626213107018, MemAllocated=11.86GB, MaxMemAllocated=13.54GB
 14%|████████████▋                                                                             | 51/361 [00:09<00:50,  6.20batch/s][2024-11-08 17:08:07,458] [INFO] [logging.py:129:log_dist] [Rank 0] step=13, skipped=3, lr=[8.169757931772212e-05], mom=[(0.9, 0.95)]
 14%|████████████▉                                                                             | 52/361 [00:09<00:50,  6.13batch/s][2024-11-08 17:08:07,458] [INFO] [timer.py:264:stop] epoch=0/micro_step=52/global_step=13, RunningAvgSamplesPerSec=24.464291806234066, CurrSamplesPerSec=24.50580730623016, MemAllocated=11.84GB, MaxMemAllocated=13.54GB
 15%|█████████████▋                                                                            | 55/361 [00:10<00:48,  6.25batch/s][2024-11-08 17:08:08,102] [INFO] [logging.py:129:log_dist] [Rank 0] step=14, skipped=3, lr=[8.466533464502744e-05], mom=[(0.9, 0.95)]
 16%|█████████████▉                                                                            | 56/361 [00:10<00:49,  6.11batch/s][2024-11-08 17:08:08,103] [INFO] [timer.py:264:stop] epoch=0/micro_step=56/global_step=14, RunningAvgSamplesPerSec=24.49999975661437, CurrSamplesPerSec=24.899740446823003, MemAllocated=11.87GB, MaxMemAllocated=13.54GB
 16%|██████████████▋                                                                           | 59/361 [00:11<00:48,  6.25batch/s][2024-11-08 17:08:08,748] [INFO] [logging.py:129:log_dist] [Rank 0] step=15, skipped=3, lr=[8.737468298669776e-05], mom=[(0.9, 0.95)]
 17%|██████████████▉                                                                           | 60/361 [00:11<00:49,  6.10batch/s][2024-11-08 17:08:08,748] [INFO] [timer.py:264:stop] epoch=0/micro_step=60/global_step=15, RunningAvgSamplesPerSec=24.5267633792578, CurrSamplesPerSec=24.85250970584881, MemAllocated=11.84GB, MaxMemAllocated=13.54GB
 17%|███████████████▋                                                                          | 63/361 [00:11<00:47,  6.21batch/s][2024-11-08 17:08:09,395] [INFO] [logging.py:129:log_dist] [Rank 0] step=16, skipped=3, lr=[8.986704185746869e-05], mom=[(0.9, 0.95)]
 18%|███████████████▉                                                                          | 64/361 [00:11<00:48,  6.11batch/s][2024-11-08 17:08:09,395] [INFO] [timer.py:264:stop] epoch=0/micro_step=64/global_step=16, RunningAvgSamplesPerSec=24.54535939232108, CurrSamplesPerSec=24.78966078230782, MemAllocated=11.87GB, MaxMemAllocated=13.54GB
 19%|████████████████▋                                                                         | 67/361 [00:12<00:47,  6.25batch/s][2024-11-08 17:08:10,038] [INFO] [logging.py:129:log_dist] [Rank 0] step=17, skipped=3, lr=[9.21746057463055e-05], mom=[(0.9, 0.95)]
 19%|████████████████▉                                                                         | 68/361 [00:12<00:47,  6.14batch/s][2024-11-08 17:08:10,038] [INFO] [timer.py:264:stop] epoch=0/micro_step=68/global_step=17, RunningAvgSamplesPerSec=24.572142005731475, CurrSamplesPerSec=24.95329187573621, MemAllocated=11.84GB, MaxMemAllocated=13.54GB
 20%|█████████████████▋                                                                        | 71/361 [00:12<00:46,  6.27batch/s][2024-11-08 17:08:10,680] [INFO] [logging.py:129:log_dist] [Rank 0] step=18, skipped=3, lr=[9.432289633102436e-05], mom=[(0.9, 0.95)]
 20%|█████████████████▉                                                                        | 72/361 [00:13<00:46,  6.15batch/s][2024-11-08 17:08:10,680] [INFO] [timer.py:264:stop] epoch=0/micro_step=72/global_step=18, RunningAvgSamplesPerSec=24.59836095205259, CurrSamplesPerSec=24.9984295693146, MemAllocated=11.85GB, MaxMemAllocated=13.54GB
 21%|██████████████████▋                                                                       | 75/361 [00:13<00:45,  6.25batch/s][2024-11-08 17:08:11,324] [INFO] [logging.py:129:log_dist] [Rank 0] step=19, skipped=3, lr=[9.633248796452733e-05], mom=[(0.9, 0.95)]
 21%|██████████████████▉                                                                       | 76/361 [00:13<00:46,  6.15batch/s][2024-11-08 17:08:11,324] [INFO] [timer.py:264:stop] epoch=0/micro_step=76/global_step=19, RunningAvgSamplesPerSec=24.61640502613241, CurrSamplesPerSec=24.9087144346569, MemAllocated=11.84GB, MaxMemAllocated=13.54GB
 22%|███████████████████▋                                                                      | 79/361 [00:14<00:44,  6.27batch/s][2024-11-08 17:08:11,966] [INFO] [logging.py:129:log_dist] [Rank 0] step=20, skipped=3, lr=[9.822020913692442e-05], mom=[(0.9, 0.95)]
 22%|███████████████████▉                                                                      | 80/361 [00:14<00:45,  6.15batch/s][2024-11-08 17:08:11,967] [INFO] [timer.py:264:stop] epoch=0/micro_step=80/global_step=20, RunningAvgSamplesPerSec=24.635272610247558, CurrSamplesPerSec=24.960466185853033, MemAllocated=11.84GB, MaxMemAllocated=13.54GB
Epoch: 0, step: 80, global_step:20, loss: 1.0513336181640625
step: 80-20-20
 23%|████████████████████▋                                                                     | 83/361 [00:14<00:45,  6.15batch/s][2024-11-08 17:08:12,619] [INFO] [logging.py:129:log_dist] [Rank 0] step=21, skipped=3, lr=[0.0001], mom=[(0.9, 0.95)]
 23%|████████████████████▉                                                                     | 84/361 [00:15<00:45,  6.07batch/s][2024-11-08 17:08:12,620] [INFO] [timer.py:264:stop] epoch=0/micro_step=84/global_step=21, RunningAvgSamplesPerSec=24.632095273455004, CurrSamplesPerSec=24.575005291526246, MemAllocated=11.87GB, MaxMemAllocated=13.54GB
 24%|█████████████████████▋                                                                    | 87/361 [00:15<00:43,  6.26batch/s][2024-11-08 17:08:13,258] [INFO] [logging.py:129:log_dist] [Rank 0] step=22, skipped=3, lr=[0.0001], mom=[(0.9, 0.95)]
 24%|█████████████████████▉                                                                    | 88/361 [00:15<00:44,  6.14batch/s][2024-11-08 17:08:13,259] [INFO] [timer.py:264:stop] epoch=0/micro_step=88/global_step=22, RunningAvgSamplesPerSec=24.65548972625532, CurrSamplesPerSec=25.108543306074118, MemAllocated=11.89GB, MaxMemAllocated=13.54GB
 25%|██████████████████████▋                                                                   | 91/361 [00:16<00:43,  6.25batch/s][2024-11-08 17:08:13,903] [INFO] [logging.py:129:log_dist] [Rank 0] step=23, skipped=3, lr=[9.945121951219513e-05], mom=[(0.9, 0.95)]
 25%|██████████████████████▉                                                                   | 92/361 [00:16<00:43,  6.13batch/s][2024-11-08 17:08:13,904] [INFO] [timer.py:264:stop] epoch=0/micro_step=92/global_step=23, RunningAvgSamplesPerSec=24.66540866536722, CurrSamplesPerSec=24.865438368177724, MemAllocated=11.84GB, MaxMemAllocated=13.54GB
 26%|███████████████████████▋                                                                  | 95/361 [00:16<00:42,  6.19batch/s][2024-11-08 17:08:14,553] [INFO] [logging.py:129:log_dist] [Rank 0] step=24, skipped=3, lr=[9.890243902439024e-05], mom=[(0.9, 0.95)]
 27%|███████████████████████▉                                                                  | 96/361 [00:17<00:43,  6.10batch/s][2024-11-08 17:08:14,553] [INFO] [timer.py:264:stop] epoch=0/micro_step=96/global_step=24, RunningAvgSamplesPerSec=24.666616667201023, CurrSamplesPerSec=24.691973961041388, MemAllocated=11.84GB, MaxMemAllocated=13.54GB
 27%|████████████████████████▋                                                                 | 99/361 [00:17<00:42,  6.23batch/s][2024-11-08 17:08:15,196] [INFO] [logging.py:129:log_dist] [Rank 0] step=25, skipped=3, lr=[9.835365853658537e-05], mom=[(0.9, 0.95)]
 28%|████████████████████████▋                                                                | 100/361 [00:17<00:42,  6.17batch/s][2024-11-08 17:08:15,196] [INFO] [timer.py:264:stop] epoch=0/micro_step=100/global_step=25, RunningAvgSamplesPerSec=24.67917941894309, CurrSamplesPerSec=24.958795214794428, MemAllocated=11.84GB, MaxMemAllocated=13.54GB
 29%|█████████████████████████▍                                                               | 103/361 [00:18<00:41,  6.24batch/s][2024-11-08 17:08:15,843] [INFO] [logging.py:129:log_dist] [Rank 0] step=26, skipped=3, lr=[9.78048780487805e-05], mom=[(0.9, 0.95)]
 29%|█████████████████████████▋                                                               | 104/361 [00:18<00:42,  6.12batch/s][2024-11-08 17:08:15,843] [INFO] [timer.py:264:stop] epoch=0/micro_step=104/global_step=26, RunningAvgSamplesPerSec=24.683684910610012, CurrSamplesPerSec=24.787728770005838, MemAllocated=11.84GB, MaxMemAllocated=13.54GB
 30%|██████████████████████████▍                                                              | 107/361 [00:18<00:41,  6.13batch/s][2024-11-08 17:08:16,498] [INFO] [logging.py:129:log_dist] [Rank 0] step=27, skipped=3, lr=[9.72560975609756e-05], mom=[(0.9, 0.95)]
 30%|██████████████████████████▋                                                              | 108/361 [00:18<00:41,  6.13batch/s][2024-11-08 17:08:16,498] [INFO] [timer.py:264:stop] epoch=0/micro_step=108/global_step=27, RunningAvgSamplesPerSec=24.676375494969918, CurrSamplesPerSec=24.502201525772378, MemAllocated=11.84GB, MaxMemAllocated=13.54GB
 31%|███████████████████████████▌                                                             | 112/361 [00:19<00:40,  6.16batch/s][2024-11-08 17:08:17,161] [INFO] [logging.py:129:log_dist] [Rank 0] step=28, skipped=3, lr=[9.670731707317073e-05], mom=[(0.9, 0.95)]
 31%|███████████████████████████▌                                                             | 112/361 [00:19<00:40,  6.18batch/s][2024-11-08 17:08:17,161] [INFO] [timer.py:264:stop] epoch=0/micro_step=112/global_step=28, RunningAvgSamplesPerSec=24.657827236779745, CurrSamplesPerSec=24.20297931342735, MemAllocated=11.84GB, MaxMemAllocated=13.54GB
 32%|████████████████████████████▎                                                            | 115/361 [00:20<00:38,  6.34batch/s][2024-11-08 17:08:17,791] [INFO] [logging.py:129:log_dist] [Rank 0] step=29, skipped=3, lr=[9.615853658536586e-05], mom=[(0.9, 0.95)]
 32%|████████████████████████████▌                                                            | 116/361 [00:20<00:39,  6.23batch/s][2024-11-08 17:08:17,791] [INFO] [timer.py:264:stop] epoch=0/micro_step=116/global_step=29, RunningAvgSamplesPerSec=24.686717221270342, CurrSamplesPerSec=25.46232454849932, MemAllocated=11.84GB, MaxMemAllocated=13.54GB
 33%|█████████████████████████████▎                                                           | 119/361 [00:20<00:38,  6.28batch/s][2024-11-08 17:08:18,475] [INFO] [logging.py:129:log_dist] [Rank 0] step=30, skipped=3, lr=[9.560975609756097e-05], mom=[(0.9, 0.95)]
 33%|█████████████████████████████▌                                                           | 120/361 [00:20<00:41,  5.74batch/s][2024-11-08 17:08:18,475] [INFO] [timer.py:264:stop] epoch=0/micro_step=120/global_step=30, RunningAvgSamplesPerSec=24.63974983126007, CurrSamplesPerSec=23.435849408164277, MemAllocated=11.93GB, MaxMemAllocated=13.59GB
Epoch: 0, step: 120, global_step:30, loss: 0.63695068359375
step: 120-30-30
 34%|██████████████████████████████▎                                                          | 123/361 [00:21<00:39,  6.02batch/s][2024-11-08 17:08:19,114] [INFO] [logging.py:129:log_dist] [Rank 0] step=31, skipped=3, lr=[9.50609756097561e-05], mom=[(0.9, 0.95)]
 34%|██████████████████████████████▌                                                          | 124/361 [00:21<00:38,  6.13batch/s][2024-11-08 17:08:19,115] [INFO] [timer.py:264:stop] epoch=0/micro_step=124/global_step=31, RunningAvgSamplesPerSec=24.655700739928054, CurrSamplesPerSec=25.11082632182666, MemAllocated=11.84GB, MaxMemAllocated=13.59GB
 35%|███████████████████████████████▎                                                         | 127/361 [00:22<00:37,  6.31batch/s][2024-11-08 17:08:19,748] [INFO] [logging.py:129:log_dist] [Rank 0] step=32, skipped=3, lr=[9.451219512195122e-05], mom=[(0.9, 0.95)]
 35%|███████████████████████████████▌                                                         | 128/361 [00:22<00:37,  6.23batch/s][2024-11-08 17:08:19,748] [INFO] [timer.py:264:stop] epoch=0/micro_step=128/global_step=32, RunningAvgSamplesPerSec=24.677341273427523, CurrSamplesPerSec=25.321833134118396, MemAllocated=11.85GB, MaxMemAllocated=13.59GB
 36%|████████████████████████████████▎                                                        | 131/361 [00:22<00:36,  6.26batch/s][2024-11-08 17:08:20,402] [INFO] [logging.py:129:log_dist] [Rank 0] step=33, skipped=3, lr=[9.396341463414635e-05], mom=[(0.9, 0.95)]
 37%|████████████████████████████████▌                                                        | 132/361 [00:22<00:37,  6.04batch/s][2024-11-08 17:08:20,403] [INFO] [timer.py:264:stop] epoch=0/micro_step=132/global_step=33, RunningAvgSamplesPerSec=24.67190802034226, CurrSamplesPerSec=24.509978092803205, MemAllocated=11.86GB, MaxMemAllocated=13.59GB
 37%|█████████████████████████████████▎                                                       | 135/361 [00:23<00:36,  6.20batch/s][2024-11-08 17:08:21,046] [INFO] [logging.py:129:log_dist] [Rank 0] step=34, skipped=3, lr=[9.341463414634147e-05], mom=[(0.9, 0.95)]
 38%|█████████████████████████████████▌                                                       | 136/361 [00:23<00:36,  6.11batch/s][2024-11-08 17:08:21,046] [INFO] [timer.py:264:stop] epoch=0/micro_step=136/global_step=34, RunningAvgSamplesPerSec=24.679909740831736, CurrSamplesPerSec=24.93052477432655, MemAllocated=11.84GB, MaxMemAllocated=13.59GB
 39%|██████████████████████████████████▎                                                      | 139/361 [00:23<00:35,  6.23batch/s][2024-11-08 17:08:21,691] [INFO] [logging.py:129:log_dist] [Rank 0] step=35, skipped=3, lr=[9.28658536585366e-05], mom=[(0.9, 0.95)]
 39%|██████████████████████████████████▌                                                      | 140/361 [00:24<00:36,  6.12batch/s][2024-11-08 17:08:21,692] [INFO] [timer.py:264:stop] epoch=0/micro_step=140/global_step=35, RunningAvgSamplesPerSec=24.685173654028997, CurrSamplesPerSec=24.854774012752404, MemAllocated=11.86GB, MaxMemAllocated=13.59GB
 40%|███████████████████████████████████▎                                                     | 143/361 [00:24<00:35,  6.22batch/s][2024-11-08 17:08:22,339] [INFO] [logging.py:129:log_dist] [Rank 0] step=36, skipped=3, lr=[9.231707317073171e-05], mom=[(0.9, 0.95)]
 40%|███████████████████████████████████▌                                                     | 144/361 [00:24<00:35,  6.10batch/s][2024-11-08 17:08:22,340] [INFO] [timer.py:264:stop] epoch=0/micro_step=144/global_step=36, RunningAvgSamplesPerSec=24.687244609245255, CurrSamplesPerSec=24.755743308295603, MemAllocated=11.87GB, MaxMemAllocated=13.59GB
 41%|████████████████████████████████████▏                                                    | 147/361 [00:25<00:34,  6.22batch/s][2024-11-08 17:08:22,987] [INFO] [logging.py:129:log_dist] [Rank 0] step=37, skipped=3, lr=[9.176829268292684e-05], mom=[(0.9, 0.95)]
 41%|████████████████████████████████████▍                                                    | 148/361 [00:25<00:34,  6.10batch/s][2024-11-08 17:08:22,987] [INFO] [timer.py:264:stop] epoch=0/micro_step=148/global_step=37, RunningAvgSamplesPerSec=24.689844795127897, CurrSamplesPerSec=24.778539811911255, MemAllocated=11.86GB, MaxMemAllocated=13.59GB
 42%|█████████████████████████████████████▏                                                   | 151/361 [00:25<00:33,  6.23batch/s][2024-11-08 17:08:23,631] [INFO] [logging.py:129:log_dist] [Rank 0] step=38, skipped=3, lr=[9.121951219512196e-05], mom=[(0.9, 0.95)]
 42%|█████████████████████████████████████▍                                                   | 152/361 [00:26<00:34,  6.12batch/s][2024-11-08 17:08:23,632] [INFO] [timer.py:264:stop] epoch=0/micro_step=152/global_step=38, RunningAvgSamplesPerSec=24.695252617229894, CurrSamplesPerSec=24.885991653558662, MemAllocated=11.85GB, MaxMemAllocated=13.59GB
 43%|██████████████████████████████████████▏                                                  | 155/361 [00:26<00:34,  5.94batch/s][2024-11-08 17:08:24,304] [INFO] [logging.py:129:log_dist] [Rank 0] step=39, skipped=3, lr=[9.067073170731708e-05], mom=[(0.9, 0.95)]
 43%|██████████████████████████████████████▍                                                  | 156/361 [00:26<00:34,  6.02batch/s][2024-11-08 17:08:24,305] [INFO] [timer.py:264:stop] epoch=0/micro_step=156/global_step=39, RunningAvgSamplesPerSec=24.671247584507885, CurrSamplesPerSec=23.837061050469533, MemAllocated=11.87GB, MaxMemAllocated=13.59GB
 44%|███████████████████████████████████████▏                                                 | 159/361 [00:27<00:32,  6.22batch/s][2024-11-08 17:08:24,942] [INFO] [logging.py:129:log_dist] [Rank 0] step=40, skipped=3, lr=[9.01219512195122e-05], mom=[(0.9, 0.95)]
 44%|███████████████████████████████████████▍                                                 | 160/361 [00:27<00:32,  6.16batch/s][2024-11-08 17:08:24,942] [INFO] [timer.py:264:stop] epoch=0/micro_step=160/global_step=40, RunningAvgSamplesPerSec=24.683715313497338, CurrSamplesPerSec=25.154009215600396, MemAllocated=11.89GB, MaxMemAllocated=13.59GB
 44%|███████████████████████████████████████▍                                                 | 160/361 [00:27<00:32,  6.18batch/s]Epoch: 0, step: 160, global_step:40, loss: 0.5588729858398438
step: 160-40-40
 45%|████████████████████████████████████████▏                                                | 163/361 [00:28<00:36,  5.37batch/s][2024-11-08 17:08:25,703] [INFO] [logging.py:129:log_dist] [Rank 0] step=41, skipped=3, lr=[8.957317073170733e-05], mom=[(0.9, 0.95)]
 45%|████████████████████████████████████████▍                                                | 164/361 [00:28<00:35,  5.62batch/s][2024-11-08 17:08:25,704] [INFO] [timer.py:264:stop] epoch=0/micro_step=164/global_step=41, RunningAvgSamplesPerSec=24.57558946839633, CurrSamplesPerSec=21.068545958778678, MemAllocated=11.86GB, MaxMemAllocated=13.59GB
 46%|█████████████████████████████████████████▏                                               | 167/361 [00:28<00:31,  6.13batch/s][2024-11-08 17:08:26,334] [INFO] [logging.py:129:log_dist] [Rank 0] step=42, skipped=3, lr=[8.902439024390244e-05], mom=[(0.9, 0.95)]
 47%|█████████████████████████████████████████▍                                               | 168/361 [00:28<00:31,  6.15batch/s][2024-11-08 17:08:26,334] [INFO] [timer.py:264:stop] epoch=0/micro_step=168/global_step=42, RunningAvgSamplesPerSec=24.596622265090193, CurrSamplesPerSec=25.445911656995555, MemAllocated=11.86GB, MaxMemAllocated=13.59GB
 47%|██████████████████████████████████████████▏                                              | 171/361 [00:29<00:29,  6.36batch/s][2024-11-08 17:08:26,964] [INFO] [logging.py:129:log_dist] [Rank 0] step=43, skipped=3, lr=[8.847560975609757e-05], mom=[(0.9, 0.95)]
 48%|██████████████████████████████████████████▍                                              | 172/361 [00:29<00:30,  6.25batch/s][2024-11-08 17:08:26,964] [INFO] [timer.py:264:stop] epoch=0/micro_step=172/global_step=43, RunningAvgSamplesPerSec=24.61707810732763, CurrSamplesPerSec=25.46413125926745, MemAllocated=11.87GB, MaxMemAllocated=13.59GB
 48%|███████████████████████████████████████████▏                                             | 175/361 [00:30<00:35,  5.23batch/s][2024-11-08 17:08:27,705] [INFO] [logging.py:129:log_dist] [Rank 0] step=44, skipped=3, lr=[8.792682926829269e-05], mom=[(0.9, 0.95)]
 49%|███████████████████████████████████████████▍                                             | 176/361 [00:30<00:33,  5.49batch/s][2024-11-08 17:08:27,706] [INFO] [timer.py:264:stop] epoch=0/micro_step=176/global_step=44, RunningAvgSamplesPerSec=24.53609952878578, CurrSamplesPerSec=21.620143253720826, MemAllocated=11.89GB, MaxMemAllocated=13.59GB
 50%|████████████████████████████████████████████▏                                            | 179/361 [00:30<00:29,  6.10batch/s][2024-11-08 17:08:28,337] [INFO] [logging.py:129:log_dist] [Rank 0] step=45, skipped=3, lr=[8.73780487804878e-05], mom=[(0.9, 0.95)]
 50%|████████████████████████████████████████████▍                                            | 180/361 [00:30<00:29,  6.07batch/s][2024-11-08 17:08:28,337] [INFO] [timer.py:264:stop] epoch=0/micro_step=180/global_step=45, RunningAvgSamplesPerSec=24.55543687106703, CurrSamplesPerSec=25.396030819918465, MemAllocated=11.86GB, MaxMemAllocated=13.59GB
 51%|█████████████████████████████████████████████                                            | 183/361 [00:31<00:28,  6.27batch/s][2024-11-08 17:08:29,047] [INFO] [logging.py:129:log_dist] [Rank 0] step=46, skipped=3, lr=[8.682926829268293e-05], mom=[(0.9, 0.95)]
 51%|█████████████████████████████████████████████▎                                           | 184/361 [00:31<00:32,  5.41batch/s][2024-11-08 17:08:29,048] [INFO] [timer.py:264:stop] epoch=0/micro_step=184/global_step=46, RunningAvgSamplesPerSec=24.506817641612027, CurrSamplesPerSec=22.584002276220073, MemAllocated=11.86GB, MaxMemAllocated=13.59GB
 52%|██████████████████████████████████████████████                                           | 187/361 [00:32<00:40,  4.31batch/s][2024-11-08 17:08:29,922] [INFO] [logging.py:129:log_dist] [Rank 0] step=47, skipped=3, lr=[8.628048780487805e-05], mom=[(0.9, 0.95)]
 52%|██████████████████████████████████████████████▎                                          | 188/361 [00:32<00:37,  4.60batch/s][2024-11-08 17:08:29,922] [INFO] [timer.py:264:stop] epoch=0/micro_step=188/global_step=47, RunningAvgSamplesPerSec=24.324470367465565, CurrSamplesPerSec=18.325019562140483, MemAllocated=11.88GB, MaxMemAllocated=14.2GB
 53%|███████████████████████████████████████████████▎                                         | 192/361 [00:33<00:28,  5.85batch/s][2024-11-08 17:08:30,539] [INFO] [logging.py:129:log_dist] [Rank 0] step=48, skipped=3, lr=[8.573170731707317e-05], mom=[(0.9, 0.95)]
 53%|███████████████████████████████████████████████▎                                         | 192/361 [00:33<00:28,  5.86batch/s][2024-11-08 17:08:30,540] [INFO] [timer.py:264:stop] epoch=0/micro_step=192/global_step=48, RunningAvgSamplesPerSec=24.35841899375584, CurrSamplesPerSec=25.990715432612774, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 54%|████████████████████████████████████████████████                                         | 195/361 [00:33<00:26,  6.23batch/s][2024-11-08 17:08:31,166] [INFO] [logging.py:129:log_dist] [Rank 0] step=49, skipped=3, lr=[8.518292682926829e-05], mom=[(0.9, 0.95)]
 54%|████████████████████████████████████████████████▎                                        | 196/361 [00:33<00:26,  6.19batch/s][2024-11-08 17:08:31,167] [INFO] [timer.py:264:stop] epoch=0/micro_step=196/global_step=49, RunningAvgSamplesPerSec=24.38357435651873, CurrSamplesPerSec=25.599646544880166, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 55%|█████████████████████████████████████████████████                                        | 199/361 [00:34<00:25,  6.27batch/s][2024-11-08 17:08:31,978] [INFO] [logging.py:129:log_dist] [Rank 0] step=50, skipped=3, lr=[8.463414634146342e-05], mom=[(0.9, 0.95)]
 55%|█████████████████████████████████████████████████▎                                       | 200/361 [00:34<00:34,  4.68batch/s][2024-11-08 17:08:31,978] [INFO] [timer.py:264:stop] epoch=0/micro_step=200/global_step=50, RunningAvgSamplesPerSec=24.265309913210697, CurrSamplesPerSec=19.76067713356112, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
Epoch: 0, step: 200, global_step:50, loss: 0.4884662628173828
step: 200-50-50
 56%|██████████████████████████████████████████████████                                       | 203/361 [00:35<00:29,  5.32batch/s][2024-11-08 17:08:32,639] [INFO] [logging.py:129:log_dist] [Rank 0] step=51, skipped=3, lr=[8.408536585365853e-05], mom=[(0.9, 0.95)]
 57%|██████████████████████████████████████████████████▎                                      | 204/361 [00:35<00:28,  5.60batch/s][2024-11-08 17:08:32,639] [INFO] [timer.py:264:stop] epoch=0/micro_step=204/global_step=51, RunningAvgSamplesPerSec=24.265671759177305, CurrSamplesPerSec=24.28301621164498, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 57%|███████████████████████████████████████████████████                                      | 207/361 [00:35<00:24,  6.22batch/s][2024-11-08 17:08:33,259] [INFO] [logging.py:129:log_dist] [Rank 0] step=52, skipped=3, lr=[8.353658536585366e-05], mom=[(0.9, 0.95)]
 58%|███████████████████████████████████████████████████▎                                     | 208/361 [00:35<00:24,  6.19batch/s][2024-11-08 17:08:33,259] [INFO] [timer.py:264:stop] epoch=0/micro_step=208/global_step=52, RunningAvgSamplesPerSec=24.29584166028783, CurrSamplesPerSec=25.871988334456812, MemAllocated=11.86GB, MaxMemAllocated=14.2GB
 58%|████████████████████████████████████████████████████                                     | 211/361 [00:36<00:25,  5.88batch/s][2024-11-08 17:08:33,935] [INFO] [logging.py:129:log_dist] [Rank 0] step=53, skipped=3, lr=[8.298780487804878e-05], mom=[(0.9, 0.95)]
 59%|████████████████████████████████████████████████████▎                                    | 212/361 [00:36<00:25,  5.90batch/s][2024-11-08 17:08:33,936] [INFO] [timer.py:264:stop] epoch=0/micro_step=212/global_step=53, RunningAvgSamplesPerSec=24.284062201957138, CurrSamplesPerSec=23.70927273835748, MemAllocated=11.86GB, MaxMemAllocated=14.2GB
 60%|█████████████████████████████████████████████████████                                    | 215/361 [00:36<00:26,  5.48batch/s][2024-11-08 17:08:34,678] [INFO] [logging.py:129:log_dist] [Rank 0] step=54, skipped=3, lr=[8.243902439024391e-05], mom=[(0.9, 0.95)]
 60%|█████████████████████████████████████████████████████▎                                   | 216/361 [00:37<00:25,  5.63batch/s][2024-11-08 17:08:34,679] [INFO] [timer.py:264:stop] epoch=0/micro_step=216/global_step=54, RunningAvgSamplesPerSec=24.22564018204901, CurrSamplesPerSec=21.57809235210358, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 61%|█████████████████████████████████████████████████████▉                                   | 219/361 [00:37<00:25,  5.65batch/s][2024-11-08 17:08:35,388] [INFO] [logging.py:129:log_dist] [Rank 0] step=55, skipped=3, lr=[8.189024390243903e-05], mom=[(0.9, 0.95)]
 61%|██████████████████████████████████████████████████████▏                                  | 220/361 [00:37<00:24,  5.67batch/s][2024-11-08 17:08:35,388] [INFO] [timer.py:264:stop] epoch=0/micro_step=220/global_step=55, RunningAvgSamplesPerSec=24.192839683025944, CurrSamplesPerSec=22.601526600078866, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 62%|██████████████████████████████████████████████████████▉                                  | 223/361 [00:38<00:22,  6.18batch/s][2024-11-08 17:08:36,015] [INFO] [logging.py:129:log_dist] [Rank 0] step=56, skipped=3, lr=[8.134146341463416e-05], mom=[(0.9, 0.95)]
 62%|███████████████████████████████████████████████████████▏                                 | 224/361 [00:38<00:22,  6.18batch/s][2024-11-08 17:08:36,015] [INFO] [timer.py:264:stop] epoch=0/micro_step=224/global_step=56, RunningAvgSamplesPerSec=24.217078252276735, CurrSamplesPerSec=25.575080976046234, MemAllocated=11.87GB, MaxMemAllocated=14.2GB
 63%|███████████████████████████████████████████████████████▉                                 | 227/361 [00:38<00:21,  6.34batch/s][2024-11-08 17:08:36,650] [INFO] [logging.py:129:log_dist] [Rank 0] step=57, skipped=3, lr=[8.079268292682927e-05], mom=[(0.9, 0.95)]
 63%|████████████████████████████████████████████████████████▏                                | 228/361 [00:39<00:21,  6.21batch/s][2024-11-08 17:08:36,651] [INFO] [timer.py:264:stop] epoch=0/micro_step=228/global_step=57, RunningAvgSamplesPerSec=24.235047266709465, CurrSamplesPerSec=25.246585989011606, MemAllocated=11.85GB, MaxMemAllocated=14.2GB
 64%|████████████████████████████████████████████████████████▉                                | 231/361 [00:39<00:20,  6.24batch/s][2024-11-08 17:08:37,299] [INFO] [logging.py:129:log_dist] [Rank 0] step=58, skipped=3, lr=[8.02439024390244e-05], mom=[(0.9, 0.95)]
 64%|█████████████████████████████████████████████████████████▏                               | 232/361 [00:39<00:21,  6.10batch/s][2024-11-08 17:08:37,299] [INFO] [timer.py:264:stop] epoch=0/micro_step=232/global_step=58, RunningAvgSamplesPerSec=24.244018627263653, CurrSamplesPerSec=24.747846536180898, MemAllocated=11.85GB, MaxMemAllocated=14.2GB
 65%|█████████████████████████████████████████████████████████▉                               | 235/361 [00:40<00:20,  6.22batch/s][2024-11-08 17:08:37,944] [INFO] [logging.py:129:log_dist] [Rank 0] step=59, skipped=3, lr=[7.969512195121952e-05], mom=[(0.9, 0.95)]
 65%|██████████████████████████████████████████████████████████▏                              | 236/361 [00:40<00:20,  6.12batch/s][2024-11-08 17:08:37,944] [INFO] [timer.py:264:stop] epoch=0/micro_step=236/global_step=59, RunningAvgSamplesPerSec=24.254728013704472, CurrSamplesPerSec=24.869898375842865, MemAllocated=11.88GB, MaxMemAllocated=14.2GB
 66%|██████████████████████████████████████████████████████████▉                              | 239/361 [00:40<00:19,  6.23batch/s][2024-11-08 17:08:38,590] [INFO] [logging.py:129:log_dist] [Rank 0] step=60, skipped=3, lr=[7.914634146341464e-05], mom=[(0.9, 0.95)]
 66%|███████████████████████████████████████████████████████████▏                             | 240/361 [00:41<00:19,  6.11batch/s][2024-11-08 17:08:38,590] [INFO] [timer.py:264:stop] epoch=0/micro_step=240/global_step=60, RunningAvgSamplesPerSec=24.26434072788457, CurrSamplesPerSec=24.82511303049506, MemAllocated=11.87GB, MaxMemAllocated=14.2GB
Epoch: 0, step: 240, global_step:60, loss: 0.4170543670654297
step: 240-60-60
 67%|███████████████████████████████████████████████████████████▉                             | 243/361 [00:41<00:18,  6.27batch/s][2024-11-08 17:08:39,231] [INFO] [logging.py:129:log_dist] [Rank 0] step=61, skipped=3, lr=[7.859756097560976e-05], mom=[(0.9, 0.95)]
 68%|████████████████████████████████████████████████████████████▏                            | 244/361 [00:41<00:19,  6.15batch/s][2024-11-08 17:08:39,232] [INFO] [timer.py:264:stop] epoch=0/micro_step=244/global_step=61, RunningAvgSamplesPerSec=24.276778290208945, CurrSamplesPerSec=25.020602599411824, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 68%|████████████████████████████████████████████████████████████▉                            | 247/361 [00:42<00:18,  6.23batch/s][2024-11-08 17:08:39,877] [INFO] [logging.py:129:log_dist] [Rank 0] step=62, skipped=3, lr=[7.804878048780489e-05], mom=[(0.9, 0.95)]
 69%|█████████████████████████████████████████████████████████████▏                           | 248/361 [00:42<00:18,  6.13batch/s][2024-11-08 17:08:39,878] [INFO] [timer.py:264:stop] epoch=0/micro_step=248/global_step=62, RunningAvgSamplesPerSec=24.285927834409847, CurrSamplesPerSec=24.838197056688, MemAllocated=11.88GB, MaxMemAllocated=14.2GB
 70%|█████████████████████████████████████████████████████████████▉                           | 251/361 [00:42<00:17,  6.23batch/s][2024-11-08 17:08:40,527] [INFO] [logging.py:129:log_dist] [Rank 0] step=63, skipped=3, lr=[7.75e-05], mom=[(0.9, 0.95)]
 70%|██████████████████████████████████████████████████████████████▏                          | 252/361 [00:42<00:17,  6.20batch/s][2024-11-08 17:08:40,527] [INFO] [timer.py:264:stop] epoch=0/micro_step=252/global_step=63, RunningAvgSamplesPerSec=24.292672281080844, CurrSamplesPerSec=24.704272280923412, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 71%|██████████████████████████████████████████████████████████████▊                          | 255/361 [00:43<00:17,  6.20batch/s][2024-11-08 17:08:41,319] [INFO] [logging.py:129:log_dist] [Rank 0] step=64, skipped=3, lr=[7.695121951219513e-05], mom=[(0.9, 0.95)]
 71%|███████████████████████████████████████████████████████████████                          | 256/361 [00:43<00:21,  4.83batch/s][2024-11-08 17:08:41,320] [INFO] [timer.py:264:stop] epoch=0/micro_step=256/global_step=64, RunningAvgSamplesPerSec=24.214169828122238, CurrSamplesPerSec=20.2269398328965, MemAllocated=11.85GB, MaxMemAllocated=14.2GB
 72%|███████████████████████████████████████████████████████████████▊                         | 259/361 [00:44<00:17,  5.86batch/s][2024-11-08 17:08:41,934] [INFO] [logging.py:129:log_dist] [Rank 0] step=65, skipped=3, lr=[7.640243902439025e-05], mom=[(0.9, 0.95)]
 72%|████████████████████████████████████████████████████████████████                         | 260/361 [00:44<00:16,  5.97batch/s][2024-11-08 17:08:41,934] [INFO] [timer.py:264:stop] epoch=0/micro_step=260/global_step=65, RunningAvgSamplesPerSec=24.242053426183123, CurrSamplesPerSec=26.105854769282715, MemAllocated=11.86GB, MaxMemAllocated=14.2GB
 73%|████████████████████████████████████████████████████████████████▊                        | 263/361 [00:44<00:15,  6.23batch/s][2024-11-08 17:08:42,568] [INFO] [logging.py:129:log_dist] [Rank 0] step=66, skipped=3, lr=[7.585365853658536e-05], mom=[(0.9, 0.95)]
 73%|█████████████████████████████████████████████████████████████████                        | 264/361 [00:45<00:15,  6.15batch/s][2024-11-08 17:08:42,568] [INFO] [timer.py:264:stop] epoch=0/micro_step=264/global_step=66, RunningAvgSamplesPerSec=24.25788093862369, CurrSamplesPerSec=25.298427024206166, MemAllocated=11.85GB, MaxMemAllocated=14.2GB
 74%|█████████████████████████████████████████████████████████████████▊                       | 267/361 [00:45<00:20,  4.68batch/s][2024-11-08 17:08:43,426] [INFO] [logging.py:129:log_dist] [Rank 0] step=67, skipped=3, lr=[7.530487804878049e-05], mom=[(0.9, 0.95)]
 74%|██████████████████████████████████████████████████████████████████                       | 268/361 [00:45<00:18,  5.07batch/s][2024-11-08 17:08:43,427] [INFO] [timer.py:264:stop] epoch=0/micro_step=268/global_step=67, RunningAvgSamplesPerSec=24.146962869406238, CurrSamplesPerSec=18.680366123113842, MemAllocated=11.88GB, MaxMemAllocated=14.2GB
 75%|██████████████████████████████████████████████████████████████████▊                      | 271/361 [00:46<00:15,  5.77batch/s][2024-11-08 17:08:44,059] [INFO] [logging.py:129:log_dist] [Rank 0] step=68, skipped=3, lr=[7.475609756097562e-05], mom=[(0.9, 0.95)]
 75%|███████████████████████████████████████████████████████████████████                      | 272/361 [00:46<00:15,  5.91batch/s][2024-11-08 17:08:44,060] [INFO] [timer.py:264:stop] epoch=0/micro_step=272/global_step=68, RunningAvgSamplesPerSec=24.164145085155738, CurrSamplesPerSec=25.335943513637066, MemAllocated=11.87GB, MaxMemAllocated=14.2GB
 76%|████████████████████████████████████████████████████████████████████                     | 276/361 [00:47<00:14,  5.89batch/s][2024-11-08 17:08:44,716] [INFO] [logging.py:129:log_dist] [Rank 0] step=69, skipped=3, lr=[7.420731707317073e-05], mom=[(0.9, 0.95)]
 76%|████████████████████████████████████████████████████████████████████                     | 276/361 [00:47<00:14,  5.89batch/s][2024-11-08 17:08:44,717] [INFO] [timer.py:264:stop] epoch=0/micro_step=276/global_step=69, RunningAvgSamplesPerSec=24.167977622087502, CurrSamplesPerSec=24.423604154884174, MemAllocated=11.89GB, MaxMemAllocated=14.2GB
 77%|████████████████████████████████████████████████████████████████████▊                    | 279/361 [00:47<00:13,  6.18batch/s][2024-11-08 17:08:45,355] [INFO] [logging.py:129:log_dist] [Rank 0] step=70, skipped=3, lr=[7.365853658536585e-05], mom=[(0.9, 0.95)]
 78%|█████████████████████████████████████████████████████████████████████                    | 280/361 [00:47<00:13,  6.20batch/s][2024-11-08 17:08:45,356] [INFO] [timer.py:264:stop] epoch=0/micro_step=280/global_step=70, RunningAvgSamplesPerSec=24.181127760827227, CurrSamplesPerSec=25.095980058902583, MemAllocated=11.85GB, MaxMemAllocated=14.2GB
Epoch: 0, step: 280, global_step:70, loss: 0.5200233459472656
step: 280-70-70
 78%|█████████████████████████████████████████████████████████████████████▊                   | 283/361 [00:48<00:12,  6.29batch/s][2024-11-08 17:08:45,994] [INFO] [logging.py:129:log_dist] [Rank 0] step=71, skipped=3, lr=[7.310975609756098e-05], mom=[(0.9, 0.95)]
 79%|██████████████████████████████████████████████████████████████████████                   | 284/361 [00:48<00:12,  6.21batch/s][2024-11-08 17:08:45,995] [INFO] [timer.py:264:stop] epoch=0/micro_step=284/global_step=71, RunningAvgSamplesPerSec=24.194437327990286, CurrSamplesPerSec=25.135157276674356, MemAllocated=11.89GB, MaxMemAllocated=14.2GB
 80%|██████████████████████████████████████████████████████████████████████▊                  | 287/361 [00:48<00:11,  6.25batch/s][2024-11-08 17:08:46,640] [INFO] [logging.py:129:log_dist] [Rank 0] step=72, skipped=3, lr=[7.256097560975609e-05], mom=[(0.9, 0.95)]
 80%|███████████████████████████████████████████████████████████████████████                  | 288/361 [00:49<00:11,  6.15batch/s][2024-11-08 17:08:46,640] [INFO] [timer.py:264:stop] epoch=0/micro_step=288/global_step=72, RunningAvgSamplesPerSec=24.203680960088075, CurrSamplesPerSec=24.858972356027664, MemAllocated=11.88GB, MaxMemAllocated=14.2GB
 81%|███████████████████████████████████████████████████████████████████████▋                 | 291/361 [00:49<00:11,  6.23batch/s][2024-11-08 17:08:47,289] [INFO] [logging.py:129:log_dist] [Rank 0] step=73, skipped=3, lr=[7.201219512195122e-05], mom=[(0.9, 0.95)]
 81%|███████████████████████████████████████████████████████████████████████▉                 | 292/361 [00:49<00:11,  6.08batch/s][2024-11-08 17:08:47,289] [INFO] [timer.py:264:stop] epoch=0/micro_step=292/global_step=73, RunningAvgSamplesPerSec=24.210649595873104, CurrSamplesPerSec=24.708592778834852, MemAllocated=11.86GB, MaxMemAllocated=14.2GB
 82%|████████████████████████████████████████████████████████████████████████▋                | 295/361 [00:50<00:10,  6.22batch/s][2024-11-08 17:08:47,935] [INFO] [logging.py:129:log_dist] [Rank 0] step=74, skipped=3, lr=[7.146341463414634e-05], mom=[(0.9, 0.95)]
 82%|████████████████████████████████████████████████████████████████████████▉                | 296/361 [00:50<00:10,  6.11batch/s][2024-11-08 17:08:47,935] [INFO] [timer.py:264:stop] epoch=0/micro_step=296/global_step=74, RunningAvgSamplesPerSec=24.21927870718334, CurrSamplesPerSec=24.848037531477832, MemAllocated=11.87GB, MaxMemAllocated=14.2GB
 83%|█████████████████████████████████████████████████████████████████████████▋               | 299/361 [00:50<00:09,  6.24batch/s][2024-11-08 17:08:48,579] [INFO] [logging.py:129:log_dist] [Rank 0] step=75, skipped=3, lr=[7.091463414634147e-05], mom=[(0.9, 0.95)]
 83%|█████████████████████████████████████████████████████████████████████████▉               | 300/361 [00:51<00:09,  6.12batch/s][2024-11-08 17:08:48,579] [INFO] [timer.py:264:stop] epoch=0/micro_step=300/global_step=75, RunningAvgSamplesPerSec=24.228320984735063, CurrSamplesPerSec=24.897560310107867, MemAllocated=11.86GB, MaxMemAllocated=14.2GB
 84%|██████████████████████████████████████████████████████████████████████████▋              | 303/361 [00:51<00:09,  6.05batch/s][2024-11-08 17:08:49,234] [INFO] [logging.py:129:log_dist] [Rank 0] step=76, skipped=3, lr=[7.03658536585366e-05], mom=[(0.9, 0.95)]
 84%|██████████████████████████████████████████████████████████████████████████▉              | 304/361 [00:51<00:09,  6.07batch/s][2024-11-08 17:08:49,234] [INFO] [timer.py:264:stop] epoch=0/micro_step=304/global_step=76, RunningAvgSamplesPerSec=24.23187036991251, CurrSamplesPerSec=24.493777263344555, MemAllocated=11.85GB, MaxMemAllocated=14.2GB
 85%|███████████████████████████████████████████████████████████████████████████▋             | 307/361 [00:52<00:08,  6.10batch/s][2024-11-08 17:08:49,901] [INFO] [logging.py:129:log_dist] [Rank 0] step=77, skipped=3, lr=[6.981707317073172e-05], mom=[(0.9, 0.95)]
 85%|███████████████████████████████████████████████████████████████████████████▉             | 308/361 [00:52<00:08,  6.15batch/s][2024-11-08 17:08:49,902] [INFO] [timer.py:264:stop] epoch=0/micro_step=308/global_step=77, RunningAvgSamplesPerSec=24.2291999369994, CurrSamplesPerSec=24.033171902684792, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 86%|████████████████████████████████████████████████████████████████████████████▋            | 311/361 [00:52<00:08,  5.97batch/s][2024-11-08 17:08:50,585] [INFO] [logging.py:129:log_dist] [Rank 0] step=78, skipped=3, lr=[6.926829268292683e-05], mom=[(0.9, 0.95)]
 86%|████████████████████████████████████████████████████████████████████████████▉            | 312/361 [00:53<00:08,  6.06batch/s][2024-11-08 17:08:50,586] [INFO] [timer.py:264:stop] epoch=0/micro_step=312/global_step=78, RunningAvgSamplesPerSec=24.218644523668612, CurrSamplesPerSec=23.452335992702185, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 87%|█████████████████████████████████████████████████████████████████████████████▋           | 315/361 [00:53<00:07,  6.35batch/s][2024-11-08 17:08:51,213] [INFO] [logging.py:129:log_dist] [Rank 0] step=79, skipped=3, lr=[6.871951219512196e-05], mom=[(0.9, 0.95)]
 88%|█████████████████████████████████████████████████████████████████████████████▉           | 316/361 [00:53<00:07,  6.20batch/s][2024-11-08 17:08:51,214] [INFO] [timer.py:264:stop] epoch=0/micro_step=316/global_step=79, RunningAvgSamplesPerSec=24.234843698916755, CurrSamplesPerSec=25.53274362341541, MemAllocated=11.86GB, MaxMemAllocated=14.2GB
 88%|██████████████████████████████████████████████████████████████████████████████▋          | 319/361 [00:54<00:06,  6.32batch/s][2024-11-08 17:08:51,859] [INFO] [logging.py:129:log_dist] [Rank 0] step=80, skipped=3, lr=[6.817073170731708e-05], mom=[(0.9, 0.95)]
 89%|██████████████████████████████████████████████████████████████████████████████▉          | 320/361 [00:54<00:06,  6.13batch/s][2024-11-08 17:08:51,859] [INFO] [timer.py:264:stop] epoch=0/micro_step=320/global_step=80, RunningAvgSamplesPerSec=24.242568842686993, CurrSamplesPerSec=24.852528113184572, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
Epoch: 0, step: 320, global_step:80, loss: 0.4399711608886719
step: 320-80-80
 89%|███████████████████████████████████████████████████████████████████████████████▋         | 323/361 [00:54<00:06,  6.29batch/s][2024-11-08 17:08:52,495] [INFO] [logging.py:129:log_dist] [Rank 0] step=81, skipped=3, lr=[6.76219512195122e-05], mom=[(0.9, 0.95)]
 90%|███████████████████████████████████████████████████████████████████████████████▉         | 324/361 [00:54<00:05,  6.21batch/s][2024-11-08 17:08:52,495] [INFO] [timer.py:264:stop] epoch=0/micro_step=324/global_step=81, RunningAvgSamplesPerSec=24.254721410318105, CurrSamplesPerSec=25.241648071599638, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 91%|████████████████████████████████████████████████████████████████████████████████▌        | 327/361 [00:55<00:06,  5.16batch/s][2024-11-08 17:08:53,261] [INFO] [logging.py:129:log_dist] [Rank 0] step=82, skipped=3, lr=[6.707317073170732e-05], mom=[(0.9, 0.95)]
 91%|████████████████████████████████████████████████████████████████████████████████▊        | 328/361 [00:55<00:06,  5.29batch/s][2024-11-08 17:08:53,261] [INFO] [timer.py:264:stop] epoch=0/micro_step=328/global_step=82, RunningAvgSamplesPerSec=24.206790449709434, CurrSamplesPerSec=20.938004834655874, MemAllocated=11.9GB, MaxMemAllocated=14.2GB
 92%|█████████████████████████████████████████████████████████████████████████████████▌       | 331/361 [00:56<00:05,  5.83batch/s][2024-11-08 17:08:53,925] [INFO] [logging.py:129:log_dist] [Rank 0] step=83, skipped=3, lr=[6.652439024390245e-05], mom=[(0.9, 0.95)]
 92%|█████████████████████████████████████████████████████████████████████████████████▊       | 332/361 [00:56<00:04,  5.94batch/s][2024-11-08 17:08:53,925] [INFO] [timer.py:264:stop] epoch=0/micro_step=332/global_step=83, RunningAvgSamplesPerSec=24.20615787157799, CurrSamplesPerSec=24.155622048063705, MemAllocated=11.87GB, MaxMemAllocated=14.2GB
 93%|██████████████████████████████████████████████████████████████████████████████████▌      | 335/361 [00:56<00:04,  5.99batch/s][2024-11-08 17:08:54,586] [INFO] [logging.py:129:log_dist] [Rank 0] step=84, skipped=3, lr=[6.597560975609756e-05], mom=[(0.9, 0.95)]
 93%|██████████████████████████████████████████████████████████████████████████████████▊      | 336/361 [00:57<00:04,  6.06batch/s][2024-11-08 17:08:54,587] [INFO] [timer.py:264:stop] epoch=0/micro_step=336/global_step=84, RunningAvgSamplesPerSec=24.206624369159524, CurrSamplesPerSec=24.244433742932937, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 94%|███████████████████████████████████████████████████████████████████████████████████▌     | 339/361 [00:57<00:03,  6.22batch/s][2024-11-08 17:08:55,265] [INFO] [logging.py:129:log_dist] [Rank 0] step=85, skipped=3, lr=[6.542682926829269e-05], mom=[(0.9, 0.95)]
 94%|███████████████████████████████████████████████████████████████████████████████████▊     | 340/361 [00:57<00:03,  5.70batch/s][2024-11-08 17:08:55,265] [INFO] [timer.py:264:stop] epoch=0/micro_step=340/global_step=85, RunningAvgSamplesPerSec=24.19957376091189, CurrSamplesPerSec=23.635039835322225, MemAllocated=11.92GB, MaxMemAllocated=14.2GB
 95%|████████████████████████████████████████████████████████████████████████████████████▌    | 343/361 [00:58<00:02,  6.25batch/s][2024-11-08 17:08:55,881] [INFO] [logging.py:129:log_dist] [Rank 0] step=86, skipped=3, lr=[6.487804878048781e-05], mom=[(0.9, 0.95)]
 95%|████████████████████████████████████████████████████████████████████████████████████▊    | 344/361 [00:58<00:02,  6.26batch/s][2024-11-08 17:08:55,882] [INFO] [timer.py:264:stop] epoch=0/micro_step=344/global_step=86, RunningAvgSamplesPerSec=24.219952048904265, CurrSamplesPerSec=26.039940593444225, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 96%|█████████████████████████████████████████████████████████████████████████████████████▌   | 347/361 [00:58<00:02,  6.40batch/s][2024-11-08 17:08:56,512] [INFO] [logging.py:129:log_dist] [Rank 0] step=87, skipped=3, lr=[6.432926829268292e-05], mom=[(0.9, 0.95)]
 96%|█████████████████████████████████████████████████████████████████████████████████████▊   | 348/361 [00:59<00:02,  6.23batch/s][2024-11-08 17:08:56,512] [INFO] [timer.py:264:stop] epoch=0/micro_step=348/global_step=87, RunningAvgSamplesPerSec=24.23366289933785, CurrSamplesPerSec=25.44351907413834, MemAllocated=11.87GB, MaxMemAllocated=14.2GB
 97%|██████████████████████████████████████████████████████████████████████████████████████▌  | 351/361 [00:59<00:02,  4.86batch/s][2024-11-08 17:08:57,300] [INFO] [logging.py:129:log_dist] [Rank 0] step=88, skipped=3, lr=[6.378048780487805e-05], mom=[(0.9, 0.95)]
 98%|██████████████████████████████████████████████████████████████████████████████████████▊  | 352/361 [00:59<00:01,  5.21batch/s][2024-11-08 17:08:57,301] [INFO] [timer.py:264:stop] epoch=0/micro_step=352/global_step=88, RunningAvgSamplesPerSec=24.17973149697895, CurrSamplesPerSec=20.333337893081097, MemAllocated=11.85GB, MaxMemAllocated=14.2GB
 98%|███████████████████████████████████████████████████████████████████████████████████████▌ | 355/361 [01:00<00:01,  6.00batch/s][2024-11-08 17:08:57,921] [INFO] [logging.py:129:log_dist] [Rank 0] step=89, skipped=3, lr=[6.323170731707318e-05], mom=[(0.9, 0.95)]
 99%|███████████████████████████████████████████████████████████████████████████████████████▊ | 356/361 [01:00<00:00,  6.07batch/s][2024-11-08 17:08:57,922] [INFO] [timer.py:264:stop] epoch=0/micro_step=356/global_step=89, RunningAvgSamplesPerSec=24.19756159737619, CurrSamplesPerSec=25.835941859469933, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 99%|████████████████████████████████████████████████████████████████████████████████████████▌| 359/361 [01:00<00:00,  6.30batch/s][2024-11-08 17:08:58,556] [INFO] [logging.py:129:log_dist] [Rank 0] step=90, skipped=3, lr=[6.26829268292683e-05], mom=[(0.9, 0.95)]
100%|████████████████████████████████████████████████████████████████████████████████████████▊| 360/361 [01:01<00:00,  6.19batch/s][2024-11-08 17:08:58,556] [INFO] [timer.py:264:stop] epoch=0/micro_step=360/global_step=90, RunningAvgSamplesPerSec=24.20938413604395, CurrSamplesPerSec=25.284091656936724, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
Epoch: 0, step: 360, global_step:90, loss: 0.3734106540679932
step: 360-90-90
100%|█████████████████████████████████████████████████████████████████████████████████████████| 361/361 [01:00<00:00,  5.94batch/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████| 361/361 [01:01<00:00,  5.89batch/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████| 361/361 [01:01<00:00,  5.90batch/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████| 361/361 [01:01<00:00,  5.90batch/s]
  0%|                                                                                                   | 0/361 [00:00<?, ?batch/s]Beginning of Epoch 2/2, Total Micro Batches 361
  1%|| 3/361 [00:00<01:07,  5.31batch/s][2024-11-08 17:08:59,306] [INFO] [logging.py:129:log_dist] [Rank 0] step=91, skipped=3, lr=[6.213414634146341e-05], mom=[(0.9, 0.95)]
  1%|| 3/361 [00:00<01:07,  5.29batch/s][2024-11-08 17:08:59,306] [INFO] [timer.py:264:stop] epoch=0/micro_step=364/global_step=91, RunningAvgSamplesPerSec=24.21735028560466, CurrSamplesPerSec=24.939474628516038, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
  2%|█▌                                                                                         | 6/361 [00:01<00:57,  6.22batch/s][2024-11-08 17:08:59,931] [INFO] [logging.py:129:log_dist] [Rank 0] step=92, skipped=3, lr=[6.158536585365854e-05], mom=[(0.9, 0.95)]
  2%|█▊                                                                                         | 7/361 [00:01<00:58,  6.10batch/s][2024-11-08 17:08:59,931] [INFO] [timer.py:264:stop] epoch=0/micro_step=368/global_step=92, RunningAvgSamplesPerSec=24.232647561483713, CurrSamplesPerSec=25.67607310135441, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
  3%|██▋                                                                                       | 11/361 [00:01<00:56,  6.18batch/s][2024-11-08 17:09:00,573] [INFO] [logging.py:129:log_dist] [Rank 0] step=93, skipped=3, lr=[6.103658536585367e-05], mom=[(0.9, 0.95)]
  3%|██▋                                                                                       | 11/361 [00:01<00:56,  6.20batch/s][2024-11-08 17:09:00,573] [INFO] [timer.py:264:stop] epoch=0/micro_step=372/global_step=93, RunningAvgSamplesPerSec=24.240892982577318, CurrSamplesPerSec=25.00664550180473, MemAllocated=11.86GB, MaxMemAllocated=14.2GB
  4%|███▍                                                                                      | 14/361 [00:02<00:54,  6.31batch/s][2024-11-08 17:09:01,210] [INFO] [logging.py:129:log_dist] [Rank 0] step=94, skipped=3, lr=[6.0487804878048785e-05], mom=[(0.9, 0.95)]
  4%|███▋                                                                                      | 15/361 [00:02<00:55,  6.21batch/s][2024-11-08 17:09:01,210] [INFO] [timer.py:264:stop] epoch=0/micro_step=376/global_step=94, RunningAvgSamplesPerSec=24.25060444204992, CurrSamplesPerSec=25.16811246438491, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
  5%|████▍                                                                                     | 18/361 [00:02<00:54,  6.28batch/s][2024-11-08 17:09:01,851] [INFO] [logging.py:129:log_dist] [Rank 0] step=95, skipped=3, lr=[5.993902439024391e-05], mom=[(0.9, 0.95)]
  5%|████▋                                                                                     | 19/361 [00:03<00:55,  6.20batch/s][2024-11-08 17:09:01,851] [INFO] [timer.py:264:stop] epoch=0/micro_step=380/global_step=95, RunningAvgSamplesPerSec=24.258815075841476, CurrSamplesPerSec=25.038703806193816, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
  6%|█████▍                                                                                    | 22/361 [00:03<00:53,  6.29batch/s][2024-11-08 17:09:02,491] [INFO] [logging.py:129:log_dist] [Rank 0] step=96, skipped=3, lr=[5.939024390243903e-05], mom=[(0.9, 0.95)]
  6%|█████▋                                                                                    | 23/361 [00:03<00:54,  6.17batch/s][2024-11-08 17:09:02,491] [INFO] [timer.py:264:stop] epoch=0/micro_step=384/global_step=96, RunningAvgSamplesPerSec=24.267062521632727, CurrSamplesPerSec=25.059348136263193, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
  7%|██████▋                                                                                   | 27/361 [00:04<00:54,  6.08batch/s][2024-11-08 17:09:03,164] [INFO] [logging.py:129:log_dist] [Rank 0] step=97, skipped=3, lr=[5.8841463414634155e-05], mom=[(0.9, 0.95)]
  7%|██████▋                                                                                   | 27/361 [00:04<00:55,  6.06batch/s][2024-11-08 17:09:03,164] [INFO] [timer.py:264:stop] epoch=0/micro_step=388/global_step=97, RunningAvgSamplesPerSec=24.262539087469598, CurrSamplesPerSec=23.844700661267062, MemAllocated=11.85GB, MaxMemAllocated=14.2GB
  8%|███████▍                                                                                  | 30/361 [00:05<01:03,  5.19batch/s][2024-11-08 17:09:03,897] [INFO] [logging.py:129:log_dist] [Rank 0] step=98, skipped=3, lr=[5.8292682926829274e-05], mom=[(0.9, 0.95)]
  9%|███████▋                                                                                  | 31/361 [00:05<01:00,  5.50batch/s][2024-11-08 17:09:03,898] [INFO] [timer.py:264:stop] epoch=0/micro_step=392/global_step=98, RunningAvgSamplesPerSec=24.234790286853816, CurrSamplesPerSec=21.859691604893605, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
  9%|████████▍                                                                                 | 34/361 [00:05<00:57,  5.65batch/s][2024-11-08 17:09:04,562] [INFO] [logging.py:129:log_dist] [Rank 0] step=99, skipped=3, lr=[5.774390243902439e-05], mom=[(0.9, 0.95)]
 10%|████████▋                                                                                 | 35/361 [00:05<00:55,  5.83batch/s][2024-11-08 17:09:04,562] [INFO] [timer.py:264:stop] epoch=0/micro_step=396/global_step=99, RunningAvgSamplesPerSec=24.233669621007838, CurrSamplesPerSec=24.12652975156865, MemAllocated=11.86GB, MaxMemAllocated=14.2GB
 11%|█████████▍                                                                                | 38/361 [00:06<00:51,  6.30batch/s][2024-11-08 17:09:05,179] [INFO] [logging.py:129:log_dist] [Rank 0] step=100, skipped=3, lr=[5.719512195121952e-05], mom=[(0.9, 0.95)]
 11%|█████████▋                                                                                | 39/361 [00:06<00:51,  6.27batch/s][2024-11-08 17:09:05,180] [INFO] [timer.py:264:stop] epoch=0/micro_step=400/global_step=100, RunningAvgSamplesPerSec=24.250400845913706, CurrSamplesPerSec=25.990977151040383, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 11%|█████████▋                                                                                | 39/361 [00:06<00:51,  6.24batch/s]Epoch: 1, step: 40, global_step:100, loss: 0.3425929069519043
step: 40-100-100
 12%|██████████▋                                                                               | 43/361 [00:07<00:51,  6.21batch/s][2024-11-08 17:09:05,843] [INFO] [logging.py:129:log_dist] [Rank 0] step=101, skipped=3, lr=[5.664634146341464e-05], mom=[(0.9, 0.95)]
[2024-11-08 17:09:05,843] [INFO] [timer.py:264:stop] epoch=0/micro_step=404/global_step=101, RunningAvgSamplesPerSec=24.24988322235398, CurrSamplesPerSec=24.199226483510095, MemAllocated=11.88GB, MaxMemAllocated=14.2GB
 13%|███████████▋                                                                              | 47/361 [00:07<00:50,  6.25batch/s][2024-11-08 17:09:06,472] [INFO] [logging.py:129:log_dist] [Rank 0] step=102, skipped=3, lr=[5.609756097560976e-05], mom=[(0.9, 0.95)]
 13%|███████████▋                                                                              | 47/361 [00:07<00:50,  6.25batch/s][2024-11-08 17:09:06,473] [INFO] [timer.py:264:stop] epoch=0/micro_step=408/global_step=102, RunningAvgSamplesPerSec=24.261550989446256, CurrSamplesPerSec=25.474976910460285, MemAllocated=11.87GB, MaxMemAllocated=14.2GB
 14%|████████████▍                                                                             | 50/361 [00:08<00:50,  6.21batch/s][2024-11-08 17:09:07,119] [INFO] [logging.py:129:log_dist] [Rank 0] step=103, skipped=3, lr=[5.554878048780488e-05], mom=[(0.9, 0.95)]
 14%|████████████▋                                                                             | 51/361 [00:08<00:49,  6.20batch/s][2024-11-08 17:09:07,119] [INFO] [timer.py:264:stop] epoch=0/micro_step=412/global_step=103, RunningAvgSamplesPerSec=24.266849867070878, CurrSamplesPerSec=24.80864897201143, MemAllocated=11.87GB, MaxMemAllocated=14.2GB
 15%|█████████████▍                                                                            | 54/361 [00:08<00:48,  6.29batch/s][2024-11-08 17:09:07,760] [INFO] [logging.py:129:log_dist] [Rank 0] step=104, skipped=3, lr=[5.5e-05], mom=[(0.9, 0.95)]
 15%|█████████████▋                                                                            | 55/361 [00:09<00:49,  6.19batch/s][2024-11-08 17:09:07,761] [INFO] [timer.py:264:stop] epoch=0/micro_step=416/global_step=104, RunningAvgSamplesPerSec=24.274027638026443, CurrSamplesPerSec=25.02148884611155, MemAllocated=11.86GB, MaxMemAllocated=14.2GB
 16%|██████████████▍                                                                           | 58/361 [00:09<00:48,  6.27batch/s][2024-11-08 17:09:08,402] [INFO] [logging.py:129:log_dist] [Rank 0] step=105, skipped=3, lr=[5.445121951219512e-05], mom=[(0.9, 0.95)]
 16%|██████████████▋                                                                           | 59/361 [00:09<00:48,  6.18batch/s][2024-11-08 17:09:08,403] [INFO] [timer.py:264:stop] epoch=0/micro_step=420/global_step=105, RunningAvgSamplesPerSec=24.28081496226798, CurrSamplesPerSec=24.993606855032088, MemAllocated=11.88GB, MaxMemAllocated=14.2GB
 17%|███████████████▍                                                                          | 62/361 [00:10<00:47,  6.27batch/s][2024-11-08 17:09:09,044] [INFO] [logging.py:129:log_dist] [Rank 0] step=106, skipped=3, lr=[5.390243902439025e-05], mom=[(0.9, 0.95)]
 17%|███████████████▋                                                                          | 63/361 [00:10<00:48,  6.15batch/s][2024-11-08 17:09:09,045] [INFO] [timer.py:264:stop] epoch=0/micro_step=424/global_step=106, RunningAvgSamplesPerSec=24.287404115547645, CurrSamplesPerSec=24.9857529809237, MemAllocated=11.86GB, MaxMemAllocated=14.2GB
 18%|████████████████▍                                                                         | 66/361 [00:10<00:46,  6.28batch/s][2024-11-08 17:09:09,685] [INFO] [logging.py:129:log_dist] [Rank 0] step=107, skipped=3, lr=[5.3353658536585366e-05], mom=[(0.9, 0.95)]
 19%|████████████████▋                                                                         | 67/361 [00:10<00:47,  6.16batch/s][2024-11-08 17:09:09,686] [INFO] [timer.py:264:stop] epoch=0/micro_step=428/global_step=107, RunningAvgSamplesPerSec=24.29428785426089, CurrSamplesPerSec=25.032110031314314, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 19%|█████████████████▍                                                                        | 70/361 [00:11<00:46,  6.26batch/s][2024-11-08 17:09:10,329] [INFO] [logging.py:129:log_dist] [Rank 0] step=108, skipped=3, lr=[5.2804878048780485e-05], mom=[(0.9, 0.95)]
 20%|█████████████████▋                                                                        | 71/361 [00:11<00:47,  6.15batch/s][2024-11-08 17:09:10,329] [INFO] [timer.py:264:stop] epoch=0/micro_step=432/global_step=108, RunningAvgSamplesPerSec=24.300098406737824, CurrSamplesPerSec=24.926033739218198, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 20%|██████████████████▍                                                                       | 74/361 [00:12<00:45,  6.24batch/s][2024-11-08 17:09:10,975] [INFO] [logging.py:129:log_dist] [Rank 0] step=109, skipped=3, lr=[5.225609756097561e-05], mom=[(0.9, 0.95)]
 21%|██████████████████▋                                                                       | 75/361 [00:12<00:46,  6.12batch/s][2024-11-08 17:09:10,976] [INFO] [timer.py:264:stop] epoch=0/micro_step=436/global_step=109, RunningAvgSamplesPerSec=24.304825445035657, CurrSamplesPerSec=24.81650200745077, MemAllocated=11.85GB, MaxMemAllocated=14.2GB
 22%|███████████████████▍                                                                      | 78/361 [00:12<00:45,  6.25batch/s][2024-11-08 17:09:11,619] [INFO] [logging.py:129:log_dist] [Rank 0] step=110, skipped=3, lr=[5.1707317073170736e-05], mom=[(0.9, 0.95)]
 22%|███████████████████▋                                                                      | 79/361 [00:12<00:45,  6.13batch/s][2024-11-08 17:09:11,620] [INFO] [timer.py:264:stop] epoch=0/micro_step=440/global_step=110, RunningAvgSamplesPerSec=24.310298914961287, CurrSamplesPerSec=24.910517405842256, MemAllocated=11.89GB, MaxMemAllocated=14.2GB
 22%|███████████████████▋                                                                      | 79/361 [00:12<00:45,  6.16batch/s]Epoch: 1, step: 80, global_step:110, loss: 0.33206987380981445
step: 80-110-110
 23%|████████████████████▍                                                                     | 82/361 [00:13<00:44,  6.26batch/s][2024-11-08 17:09:12,270] [INFO] [logging.py:129:log_dist] [Rank 0] step=111, skipped=3, lr=[5.1158536585365855e-05], mom=[(0.9, 0.95)]
 23%|████████████████████▋                                                                     | 83/361 [00:13<00:45,  6.08batch/s][2024-11-08 17:09:12,271] [INFO] [timer.py:264:stop] epoch=0/micro_step=444/global_step=111, RunningAvgSamplesPerSec=24.313334906610493, CurrSamplesPerSec=24.64570841594564, MemAllocated=11.86GB, MaxMemAllocated=14.2GB
 24%|█████████████████████▍                                                                    | 86/361 [00:14<00:44,  6.24batch/s][2024-11-08 17:09:12,912] [INFO] [logging.py:129:log_dist] [Rank 0] step=112, skipped=3, lr=[5.060975609756098e-05], mom=[(0.9, 0.95)]
 24%|█████████████████████▋                                                                    | 87/361 [00:14<00:44,  6.13batch/s][2024-11-08 17:09:12,912] [INFO] [timer.py:264:stop] epoch=0/micro_step=448/global_step=112, RunningAvgSamplesPerSec=24.3195073282069, CurrSamplesPerSec=25.01158511151755, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 25%|██████████████████████▍                                                                   | 90/361 [00:14<00:43,  6.26batch/s][2024-11-08 17:09:13,554] [INFO] [logging.py:129:log_dist] [Rank 0] step=113, skipped=3, lr=[5.00609756097561e-05], mom=[(0.9, 0.95)]
 25%|██████████████████████▋                                                                   | 91/361 [00:14<00:43,  6.15batch/s][2024-11-08 17:09:13,554] [INFO] [timer.py:264:stop] epoch=0/micro_step=452/global_step=113, RunningAvgSamplesPerSec=24.325366401316995, CurrSamplesPerSec=24.98752990654296, MemAllocated=11.85GB, MaxMemAllocated=14.2GB
 26%|███████████████████████▍                                                                  | 94/361 [00:15<00:42,  6.23batch/s][2024-11-08 17:09:14,200] [INFO] [logging.py:129:log_dist] [Rank 0] step=114, skipped=3, lr=[4.951219512195122e-05], mom=[(0.9, 0.95)]
 26%|███████████████████████▋                                                                  | 95/361 [00:15<00:43,  6.13batch/s][2024-11-08 17:09:14,200] [INFO] [timer.py:264:stop] epoch=0/micro_step=456/global_step=114, RunningAvgSamplesPerSec=24.32984398929755, CurrSamplesPerSec=24.837277784384476, MemAllocated=11.86GB, MaxMemAllocated=14.2GB
 27%|████████████████████████▍                                                                 | 98/361 [00:15<00:41,  6.26batch/s][2024-11-08 17:09:14,845] [INFO] [logging.py:129:log_dist] [Rank 0] step=115, skipped=3, lr=[4.8963414634146345e-05], mom=[(0.9, 0.95)]
 27%|████████████████████████▋                                                                 | 99/361 [00:16<00:42,  6.11batch/s][2024-11-08 17:09:14,846] [INFO] [timer.py:264:stop] epoch=0/micro_step=460/global_step=115, RunningAvgSamplesPerSec=24.334400185708084, CurrSamplesPerSec=24.855685374653106, MemAllocated=11.88GB, MaxMemAllocated=14.2GB
 29%|█████████████████████████▍                                                               | 103/361 [00:16<00:42,  6.14batch/s][2024-11-08 17:09:15,488] [INFO] [logging.py:129:log_dist] [Rank 0] step=116, skipped=3, lr=[4.8414634146341464e-05], mom=[(0.9, 0.95)]
 29%|█████████████████████████▍                                                               | 103/361 [00:16<00:41,  6.17batch/s][2024-11-08 17:09:15,489] [INFO] [timer.py:264:stop] epoch=0/micro_step=464/global_step=116, RunningAvgSamplesPerSec=24.339541405287804, CurrSamplesPerSec=24.93479507310005, MemAllocated=11.86GB, MaxMemAllocated=14.2GB
 29%|██████████████████████████▏                                                              | 106/361 [00:17<00:42,  6.05batch/s][2024-11-08 17:09:16,146] [INFO] [logging.py:129:log_dist] [Rank 0] step=117, skipped=3, lr=[4.786585365853658e-05], mom=[(0.9, 0.95)]
 30%|██████████████████████████▍                                                              | 107/361 [00:17<00:41,  6.07batch/s][2024-11-08 17:09:16,146] [INFO] [timer.py:264:stop] epoch=0/micro_step=468/global_step=117, RunningAvgSamplesPerSec=24.34023006463361, CurrSamplesPerSec=24.41895623481717, MemAllocated=11.87GB, MaxMemAllocated=14.2GB
 30%|███████████████████████████                                                              | 110/361 [00:17<00:41,  6.00batch/s][2024-11-08 17:09:16,809] [INFO] [logging.py:129:log_dist] [Rank 0] step=118, skipped=3, lr=[4.731707317073171e-05], mom=[(0.9, 0.95)]
 31%|███████████████████████████▎                                                             | 111/361 [00:18<00:41,  6.08batch/s][2024-11-08 17:09:16,809] [INFO] [timer.py:264:stop] epoch=0/micro_step=472/global_step=118, RunningAvgSamplesPerSec=24.33894305594973, CurrSamplesPerSec=24.19180280098901, MemAllocated=11.85GB, MaxMemAllocated=14.2GB
 32%|████████████████████████████                                                             | 114/361 [00:18<00:38,  6.36batch/s][2024-11-08 17:09:17,434] [INFO] [logging.py:129:log_dist] [Rank 0] step=119, skipped=3, lr=[4.676829268292683e-05], mom=[(0.9, 0.95)]
 32%|████████████████████████████▎                                                            | 115/361 [00:18<00:39,  6.27batch/s][2024-11-08 17:09:17,434] [INFO] [timer.py:264:stop] epoch=0/micro_step=476/global_step=119, RunningAvgSamplesPerSec=24.349623753308766, CurrSamplesPerSec=25.655567675889692, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 33%|█████████████████████████████▎                                                           | 119/361 [00:19<00:39,  6.19batch/s][2024-11-08 17:09:18,073] [INFO] [logging.py:129:log_dist] [Rank 0] step=120, skipped=3, lr=[4.6219512195121954e-05], mom=[(0.9, 0.95)]
 33%|█████████████████████████████▎                                                           | 119/361 [00:19<00:38,  6.22batch/s][2024-11-08 17:09:18,073] [INFO] [timer.py:264:stop] epoch=0/micro_step=480/global_step=120, RunningAvgSamplesPerSec=24.355890582882218, CurrSamplesPerSec=25.1120290649763, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 33%|█████████████████████████████▎                                                           | 119/361 [00:19<00:39,  6.18batch/s]Epoch: 1, step: 120, global_step:120, loss: 0.3332340240478516
step: 120-120-120
 34%|██████████████████████████████                                                           | 122/361 [00:19<00:40,  5.89batch/s][2024-11-08 17:09:18,769] [INFO] [logging.py:129:log_dist] [Rank 0] step=121, skipped=3, lr=[4.567073170731708e-05], mom=[(0.9, 0.95)]
 34%|██████████████████████████████▎                                                          | 123/361 [00:20<00:40,  5.95batch/s][2024-11-08 17:09:18,769] [INFO] [timer.py:264:stop] epoch=0/micro_step=484/global_step=121, RunningAvgSamplesPerSec=24.34434225002701, CurrSamplesPerSec=23.0544206668251, MemAllocated=11.86GB, MaxMemAllocated=14.2GB
 35%|███████████████████████████████                                                          | 126/361 [00:20<00:37,  6.34batch/s][2024-11-08 17:09:19,388] [INFO] [logging.py:129:log_dist] [Rank 0] step=122, skipped=3, lr=[4.51219512195122e-05], mom=[(0.9, 0.95)]
 35%|███████████████████████████████▎                                                         | 127/361 [00:20<00:37,  6.29batch/s][2024-11-08 17:09:19,388] [INFO] [timer.py:264:stop] epoch=0/micro_step=488/global_step=122, RunningAvgSamplesPerSec=24.356688417151517, CurrSamplesPerSec=25.920994649024326, MemAllocated=11.85GB, MaxMemAllocated=14.2GB
 36%|████████████████████████████████                                                         | 130/361 [00:21<00:36,  6.30batch/s][2024-11-08 17:09:20,032] [INFO] [logging.py:129:log_dist] [Rank 0] step=123, skipped=3, lr=[4.457317073170732e-05], mom=[(0.9, 0.95)]
 36%|████████████████████████████████▎                                                        | 131/361 [00:21<00:37,  6.14batch/s][2024-11-08 17:09:20,032] [INFO] [timer.py:264:stop] epoch=0/micro_step=492/global_step=123, RunningAvgSamplesPerSec=24.36121333953055, CurrSamplesPerSec=24.916649460703848, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 37%|█████████████████████████████████                                                        | 134/361 [00:21<00:36,  6.27batch/s][2024-11-08 17:09:20,677] [INFO] [logging.py:129:log_dist] [Rank 0] step=124, skipped=3, lr=[4.4024390243902443e-05], mom=[(0.9, 0.95)]
 37%|█████████████████████████████████▎                                                       | 135/361 [00:21<00:36,  6.16batch/s][2024-11-08 17:09:20,677] [INFO] [timer.py:264:stop] epoch=0/micro_step=496/global_step=124, RunningAvgSamplesPerSec=24.365263426911657, CurrSamplesPerSec=24.865429154941804, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 38%|██████████████████████████████████                                                       | 138/361 [00:22<00:35,  6.28batch/s][2024-11-08 17:09:21,317] [INFO] [logging.py:129:log_dist] [Rank 0] step=125, skipped=3, lr=[4.347560975609756e-05], mom=[(0.9, 0.95)]
 39%|██████████████████████████████████▎                                                      | 139/361 [00:22<00:36,  6.16batch/s][2024-11-08 17:09:21,317] [INFO] [timer.py:264:stop] epoch=0/micro_step=500/global_step=125, RunningAvgSamplesPerSec=24.370829918643214, CurrSamplesPerSec=25.069533229889178, MemAllocated=11.85GB, MaxMemAllocated=14.2GB
 39%|███████████████████████████████████                                                      | 142/361 [00:23<00:34,  6.28batch/s][2024-11-08 17:09:21,957] [INFO] [logging.py:129:log_dist] [Rank 0] step=126, skipped=3, lr=[4.292682926829268e-05], mom=[(0.9, 0.95)]
 40%|███████████████████████████████████▎                                                     | 143/361 [00:23<00:35,  6.16batch/s][2024-11-08 17:09:21,958] [INFO] [timer.py:264:stop] epoch=0/micro_step=504/global_step=126, RunningAvgSamplesPerSec=24.37606868962739, CurrSamplesPerSec=25.038040535753993, MemAllocated=11.86GB, MaxMemAllocated=14.2GB
 40%|███████████████████████████████████▉                                                     | 146/361 [00:23<00:34,  6.30batch/s][2024-11-08 17:09:22,596] [INFO] [logging.py:129:log_dist] [Rank 0] step=127, skipped=3, lr=[4.237804878048781e-05], mom=[(0.9, 0.95)]
 41%|████████████████████████████████████▏                                                    | 147/361 [00:23<00:34,  6.18batch/s][2024-11-08 17:09:22,597] [INFO] [timer.py:264:stop] epoch=0/micro_step=508/global_step=127, RunningAvgSamplesPerSec=24.381787656166015, CurrSamplesPerSec=25.112320371664058, MemAllocated=11.88GB, MaxMemAllocated=14.2GB
 42%|████████████████████████████████████▉                                                    | 150/361 [00:24<00:33,  6.32batch/s][2024-11-08 17:09:23,233] [INFO] [logging.py:129:log_dist] [Rank 0] step=128, skipped=3, lr=[4.1829268292682926e-05], mom=[(0.9, 0.95)]
 42%|█████████████████████████████████████▏                                                   | 151/361 [00:24<00:33,  6.20batch/s][2024-11-08 17:09:23,233] [INFO] [timer.py:264:stop] epoch=0/micro_step=512/global_step=128, RunningAvgSamplesPerSec=24.388079296053398, CurrSamplesPerSec=25.200917591621373, MemAllocated=11.88GB, MaxMemAllocated=14.2GB
 43%|█████████████████████████████████████▉                                                   | 154/361 [00:25<00:35,  5.89batch/s][2024-11-08 17:09:23,909] [INFO] [logging.py:129:log_dist] [Rank 0] step=129, skipped=3, lr=[4.1280487804878045e-05], mom=[(0.9, 0.95)]
 43%|██████████████████████████████████████▏                                                  | 155/361 [00:25<00:34,  5.91batch/s][2024-11-08 17:09:23,909] [INFO] [timer.py:264:stop] epoch=0/micro_step=516/global_step=129, RunningAvgSamplesPerSec=24.38285777439429, CurrSamplesPerSec=23.742330094673854, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 44%|██████████████████████████████████████▉                                                  | 158/361 [00:25<00:32,  6.18batch/s][2024-11-08 17:09:24,534] [INFO] [logging.py:129:log_dist] [Rank 0] step=130, skipped=3, lr=[4.073170731707317e-05], mom=[(0.9, 0.95)]
 44%|███████████████████████████████████████▏                                                 | 159/361 [00:25<00:32,  6.22batch/s][2024-11-08 17:09:24,535] [INFO] [timer.py:264:stop] epoch=0/micro_step=520/global_step=130, RunningAvgSamplesPerSec=24.39220042349669, CurrSamplesPerSec=25.639845179495538, MemAllocated=11.87GB, MaxMemAllocated=14.2GB
 44%|███████████████████████████████████████▍                                                 | 160/361 [00:25<00:31,  6.32batch/s]Epoch: 1, step: 160, global_step:130, loss: 0.3119508743286133
step: 160-130-130
 45%|███████████████████████████████████████▉                                                 | 162/361 [00:26<00:39,  5.01batch/s][2024-11-08 17:09:25,297] [INFO] [logging.py:129:log_dist] [Rank 0] step=131, skipped=3, lr=[4.01829268292683e-05], mom=[(0.9, 0.95)]
 45%|████████████████████████████████████████▏                                                | 163/361 [00:26<00:37,  5.34batch/s][2024-11-08 17:09:25,297] [INFO] [timer.py:264:stop] epoch=0/micro_step=524/global_step=131, RunningAvgSamplesPerSec=24.36206905954809, CurrSamplesPerSec=21.0359083233331, MemAllocated=11.85GB, MaxMemAllocated=14.2GB
 46%|████████████████████████████████████████▉                                                | 166/361 [00:27<00:32,  6.03batch/s][2024-11-08 17:09:25,919] [INFO] [logging.py:129:log_dist] [Rank 0] step=132, skipped=3, lr=[3.9634146341463416e-05], mom=[(0.9, 0.95)]
 46%|█████████████████████████████████████████▏                                               | 167/361 [00:27<00:31,  6.11batch/s][2024-11-08 17:09:25,919] [INFO] [timer.py:264:stop] epoch=0/micro_step=528/global_step=132, RunningAvgSamplesPerSec=24.37242314281195, CurrSamplesPerSec=25.786136647580207, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 47%|█████████████████████████████████████████▉                                               | 170/361 [00:27<00:30,  6.36batch/s][2024-11-08 17:09:26,543] [INFO] [logging.py:129:log_dist] [Rank 0] step=133, skipped=3, lr=[3.908536585365854e-05], mom=[(0.9, 0.95)]
 47%|██████████████████████████████████████████▏                                              | 171/361 [00:27<00:30,  6.29batch/s][2024-11-08 17:09:26,543] [INFO] [timer.py:264:stop] epoch=0/micro_step=532/global_step=133, RunningAvgSamplesPerSec=24.382078241087473, CurrSamplesPerSec=25.705873612457136, MemAllocated=11.87GB, MaxMemAllocated=14.2GB
 48%|██████████████████████████████████████████▉                                              | 174/361 [00:28<00:29,  6.33batch/s][2024-11-08 17:09:27,285] [INFO] [logging.py:129:log_dist] [Rank 0] step=134, skipped=3, lr=[3.853658536585366e-05], mom=[(0.9, 0.95)]
 48%|███████████████████████████████████████████▏                                             | 175/361 [00:28<00:35,  5.20batch/s][2024-11-08 17:09:27,285] [INFO] [timer.py:264:stop] epoch=0/micro_step=536/global_step=134, RunningAvgSamplesPerSec=24.358438706242126, CurrSamplesPerSec=21.613291611269435, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 49%|███████████████████████████████████████████▉                                             | 178/361 [00:29<00:30,  6.03batch/s][2024-11-08 17:09:27,901] [INFO] [logging.py:129:log_dist] [Rank 0] step=135, skipped=3, lr=[3.798780487804878e-05], mom=[(0.9, 0.95)]
 50%|████████████████████████████████████████████▏                                            | 179/361 [00:29<00:29,  6.12batch/s][2024-11-08 17:09:27,902] [INFO] [timer.py:264:stop] epoch=0/micro_step=540/global_step=135, RunningAvgSamplesPerSec=24.37022302567894, CurrSamplesPerSec=26.03262723823164, MemAllocated=11.87GB, MaxMemAllocated=14.2GB
 50%|████████████████████████████████████████████▊                                            | 182/361 [00:29<00:28,  6.33batch/s][2024-11-08 17:09:28,536] [INFO] [logging.py:129:log_dist] [Rank 0] step=136, skipped=3, lr=[3.7439024390243906e-05], mom=[(0.9, 0.95)]
 51%|█████████████████████████████████████████████                                            | 183/361 [00:29<00:28,  6.19batch/s][2024-11-08 17:09:28,536] [INFO] [timer.py:264:stop] epoch=0/micro_step=544/global_step=136, RunningAvgSamplesPerSec=24.37680635590186, CurrSamplesPerSec=25.28522531285095, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 52%|█████████████████████████████████████████████▊                                           | 186/361 [00:30<00:30,  5.69batch/s][2024-11-08 17:09:29,475] [INFO] [logging.py:129:log_dist] [Rank 0] step=137, skipped=3, lr=[3.6890243902439025e-05], mom=[(0.9, 0.95)]
 52%|██████████████████████████████████████████████                                           | 187/361 [00:30<00:40,  4.27batch/s][2024-11-08 17:09:29,475] [INFO] [timer.py:264:stop] epoch=0/micro_step=548/global_step=137, RunningAvgSamplesPerSec=24.299777630277898, CurrSamplesPerSec=17.07127644311658, MemAllocated=12.0GB, MaxMemAllocated=14.2GB
 53%|██████████████████████████████████████████████▊                                          | 190/361 [00:31<00:31,  5.46batch/s][2024-11-08 17:09:30,113] [INFO] [logging.py:129:log_dist] [Rank 0] step=138, skipped=3, lr=[3.634146341463415e-05], mom=[(0.9, 0.95)]
 53%|███████████████████████████████████████████████                                          | 191/361 [00:31<00:30,  5.66batch/s][2024-11-08 17:09:30,114] [INFO] [timer.py:264:stop] epoch=0/micro_step=552/global_step=138, RunningAvgSamplesPerSec=24.305641645529935, CurrSamplesPerSec=25.124100460031105, MemAllocated=11.86GB, MaxMemAllocated=14.2GB
 54%|███████████████████████████████████████████████▊                                         | 194/361 [00:31<00:26,  6.22batch/s][2024-11-08 17:09:30,730] [INFO] [logging.py:129:log_dist] [Rank 0] step=139, skipped=3, lr=[3.579268292682927e-05], mom=[(0.9, 0.95)]
 54%|████████████████████████████████████████████████                                         | 195/361 [00:32<00:26,  6.20batch/s][2024-11-08 17:09:30,730] [INFO] [timer.py:264:stop] epoch=0/micro_step=556/global_step=139, RunningAvgSamplesPerSec=24.31734943352585, CurrSamplesPerSec=26.02200796836039, MemAllocated=11.88GB, MaxMemAllocated=14.2GB
 55%|████████████████████████████████████████████████▊                                        | 198/361 [00:32<00:25,  6.36batch/s][2024-11-08 17:09:31,359] [INFO] [logging.py:129:log_dist] [Rank 0] step=140, skipped=3, lr=[3.5243902439024395e-05], mom=[(0.9, 0.95)]
 55%|█████████████████████████████████████████████████                                        | 199/361 [00:32<00:25,  6.27batch/s][2024-11-08 17:09:31,359] [INFO] [timer.py:264:stop] epoch=0/micro_step=560/global_step=140, RunningAvgSamplesPerSec=24.32555430972514, CurrSamplesPerSec=25.504457577123457, MemAllocated=11.86GB, MaxMemAllocated=14.2GB
 55%|█████████████████████████████████████████████████                                        | 199/361 [00:32<00:25,  6.24batch/s]Epoch: 1, step: 200, global_step:140, loss: 0.2866189360618591
step: 200-140-140
 56%|█████████████████████████████████████████████████▊                                       | 202/361 [00:33<00:28,  5.54batch/s][2024-11-08 17:09:32,203] [INFO] [logging.py:129:log_dist] [Rank 0] step=141, skipped=3, lr=[3.4695121951219514e-05], mom=[(0.9, 0.95)]
 56%|██████████████████████████████████████████████████                                       | 203/361 [00:33<00:29,  5.28batch/s][2024-11-08 17:09:32,203] [INFO] [timer.py:264:stop] epoch=0/micro_step=564/global_step=141, RunningAvgSamplesPerSec=24.276544168884904, CurrSamplesPerSec=18.9951613481569, MemAllocated=11.85GB, MaxMemAllocated=14.2GB
 57%|██████████████████████████████████████████████████▊                                      | 206/361 [00:33<00:25,  6.13batch/s][2024-11-08 17:09:32,808] [INFO] [logging.py:129:log_dist] [Rank 0] step=142, skipped=3, lr=[3.414634146341464e-05], mom=[(0.9, 0.95)]
 57%|███████████████████████████████████████████████████                                      | 207/361 [00:34<00:24,  6.18batch/s][2024-11-08 17:09:32,808] [INFO] [timer.py:264:stop] epoch=0/micro_step=568/global_step=142, RunningAvgSamplesPerSec=24.291193738368143, CurrSamplesPerSec=26.51522146097617, MemAllocated=11.85GB, MaxMemAllocated=14.2GB
 58%|███████████████████████████████████████████████████▊                                     | 210/361 [00:34<00:23,  6.34batch/s][2024-11-08 17:09:33,471] [INFO] [logging.py:129:log_dist] [Rank 0] step=143, skipped=3, lr=[3.359756097560976e-05], mom=[(0.9, 0.95)]
 58%|████████████████████████████████████████████████████                                     | 211/361 [00:34<00:25,  5.87batch/s][2024-11-08 17:09:33,471] [INFO] [timer.py:264:stop] epoch=0/micro_step=572/global_step=143, RunningAvgSamplesPerSec=24.290575454983173, CurrSamplesPerSec=24.204288713998576, MemAllocated=11.91GB, MaxMemAllocated=14.2GB
 59%|████████████████████████████████████████████████████▊                                    | 214/361 [00:35<00:25,  5.72batch/s][2024-11-08 17:09:34,212] [INFO] [logging.py:129:log_dist] [Rank 0] step=144, skipped=3, lr=[3.304878048780488e-05], mom=[(0.9, 0.95)]
 60%|█████████████████████████████████████████████████████                                    | 215/361 [00:35<00:26,  5.46batch/s][2024-11-08 17:09:34,212] [INFO] [timer.py:264:stop] epoch=0/micro_step=576/global_step=144, RunningAvgSamplesPerSec=24.26971671088242, CurrSamplesPerSec=21.648501141996267, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 60%|█████████████████████████████████████████████████████▋                                   | 218/361 [00:36<00:24,  5.73batch/s][2024-11-08 17:09:34,908] [INFO] [logging.py:129:log_dist] [Rank 0] step=145, skipped=3, lr=[3.2500000000000004e-05], mom=[(0.9, 0.95)]
 61%|█████████████████████████████████████████████████████▉                                   | 219/361 [00:36<00:25,  5.61batch/s][2024-11-08 17:09:34,909] [INFO] [timer.py:264:stop] epoch=0/micro_step=580/global_step=145, RunningAvgSamplesPerSec=24.260472922667606, CurrSamplesPerSec=23.01564601052541, MemAllocated=11.85GB, MaxMemAllocated=14.2GB
 61%|██████████████████████████████████████████████████████▋                                  | 222/361 [00:36<00:22,  6.08batch/s][2024-11-08 17:09:35,544] [INFO] [logging.py:129:log_dist] [Rank 0] step=146, skipped=3, lr=[3.195121951219512e-05], mom=[(0.9, 0.95)]
 62%|██████████████████████████████████████████████████████▉                                  | 223/361 [00:36<00:22,  6.15batch/s][2024-11-08 17:09:35,544] [INFO] [timer.py:264:stop] epoch=0/micro_step=584/global_step=146, RunningAvgSamplesPerSec=24.26706213525647, CurrSamplesPerSec=25.247621297408262, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 63%|███████████████████████████████████████████████████████▋                                 | 226/361 [00:37<00:21,  6.40batch/s][2024-11-08 17:09:36,168] [INFO] [logging.py:129:log_dist] [Rank 0] step=147, skipped=3, lr=[3.140243902439024e-05], mom=[(0.9, 0.95)]
 63%|███████████████████████████████████████████████████████▉                                 | 227/361 [00:37<00:21,  6.26batch/s][2024-11-08 17:09:36,168] [INFO] [timer.py:264:stop] epoch=0/micro_step=588/global_step=147, RunningAvgSamplesPerSec=24.276421995665114, CurrSamplesPerSec=25.704012745978105, MemAllocated=11.86GB, MaxMemAllocated=14.2GB
 64%|████████████████████████████████████████████████████████▋                                | 230/361 [00:37<00:20,  6.37batch/s][2024-11-08 17:09:36,803] [INFO] [logging.py:129:log_dist] [Rank 0] step=148, skipped=3, lr=[3.085365853658537e-05], mom=[(0.9, 0.95)]
 64%|████████████████████████████████████████████████████████▉                                | 231/361 [00:38<00:20,  6.23batch/s][2024-11-08 17:09:36,803] [INFO] [timer.py:264:stop] epoch=0/micro_step=592/global_step=148, RunningAvgSamplesPerSec=24.282862648235923, CurrSamplesPerSec=25.254338616719473, MemAllocated=11.86GB, MaxMemAllocated=14.2GB
 65%|█████████████████████████████████████████████████████████▋                               | 234/361 [00:38<00:20,  6.33batch/s][2024-11-08 17:09:37,442] [INFO] [logging.py:129:log_dist] [Rank 0] step=149, skipped=3, lr=[3.0304878048780494e-05], mom=[(0.9, 0.95)]
 65%|█████████████████████████████████████████████████████████▉                               | 235/361 [00:38<00:20,  6.19batch/s][2024-11-08 17:09:37,443] [INFO] [timer.py:264:stop] epoch=0/micro_step=596/global_step=149, RunningAvgSamplesPerSec=24.288224762006244, CurrSamplesPerSec=25.097312781743437, MemAllocated=11.86GB, MaxMemAllocated=14.2GB
 66%|██████████████████████████████████████████████████████████▋                              | 238/361 [00:39<00:19,  6.32batch/s][2024-11-08 17:09:38,077] [INFO] [logging.py:129:log_dist] [Rank 0] step=150, skipped=3, lr=[2.9756097560975613e-05], mom=[(0.9, 0.95)]
 66%|██████████████████████████████████████████████████████████▉                              | 239/361 [00:39<00:19,  6.23batch/s][2024-11-08 17:09:38,078] [INFO] [timer.py:264:stop] epoch=0/micro_step=600/global_step=150, RunningAvgSamplesPerSec=24.29453239997263, CurrSamplesPerSec=25.258768111503425, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 66%|██████████████████████████████████████████████████████████▉                              | 239/361 [00:39<00:19,  6.21batch/s]Epoch: 1, step: 240, global_step:150, loss: 0.256827712059021
step: 240-150-150
 67%|███████████████████████████████████████████████████████████▋                             | 242/361 [00:39<00:18,  6.33batch/s][2024-11-08 17:09:38,713] [INFO] [logging.py:129:log_dist] [Rank 0] step=151, skipped=3, lr=[2.920731707317073e-05], mom=[(0.9, 0.95)]
 67%|███████████████████████████████████████████████████████████▉                             | 243/361 [00:39<00:18,  6.24batch/s][2024-11-08 17:09:38,713] [INFO] [timer.py:264:stop] epoch=0/micro_step=604/global_step=151, RunningAvgSamplesPerSec=24.300763130404146, CurrSamplesPerSec=25.259500173322063, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 68%|████████████████████████████████████████████████████████████▋                            | 246/361 [00:40<00:18,  6.29batch/s][2024-11-08 17:09:39,356] [INFO] [logging.py:129:log_dist] [Rank 0] step=152, skipped=3, lr=[2.8658536585365857e-05], mom=[(0.9, 0.95)]
 68%|████████████████████████████████████████████████████████████▉                            | 247/361 [00:40<00:18,  6.19batch/s][2024-11-08 17:09:39,356] [INFO] [timer.py:264:stop] epoch=0/micro_step=608/global_step=152, RunningAvgSamplesPerSec=24.305097730505043, CurrSamplesPerSec=24.968666469159295, MemAllocated=11.86GB, MaxMemAllocated=14.2GB
 69%|█████████████████████████████████████████████████████████████▋                           | 250/361 [00:41<00:17,  6.17batch/s][2024-11-08 17:09:40,003] [INFO] [logging.py:129:log_dist] [Rank 0] step=153, skipped=3, lr=[2.8109756097560976e-05], mom=[(0.9, 0.95)]
 70%|█████████████████████████████████████████████████████████████▉                           | 251/361 [00:41<00:17,  6.20batch/s][2024-11-08 17:09:40,004] [INFO] [timer.py:264:stop] epoch=0/micro_step=612/global_step=153, RunningAvgSamplesPerSec=24.308179665892204, CurrSamplesPerSec=24.779454741280084, MemAllocated=11.85GB, MaxMemAllocated=14.2GB
 70%|██████████████████████████████████████████████████████████████▌                          | 254/361 [00:41<00:16,  6.37batch/s][2024-11-08 17:09:40,642] [INFO] [logging.py:129:log_dist] [Rank 0] step=154, skipped=3, lr=[2.7560975609756102e-05], mom=[(0.9, 0.95)]
 71%|██████████████████████████████████████████████████████████████▊                          | 255/361 [00:41<00:17,  6.16batch/s][2024-11-08 17:09:40,642] [INFO] [timer.py:264:stop] epoch=0/micro_step=616/global_step=154, RunningAvgSamplesPerSec=24.313398121360198, CurrSamplesPerSec=25.127919842986085, MemAllocated=11.86GB, MaxMemAllocated=14.2GB
 71%|███████████████████████████████████████████████████████████████▌                         | 258/361 [00:42<00:18,  5.65batch/s][2024-11-08 17:09:41,404] [INFO] [logging.py:129:log_dist] [Rank 0] step=155, skipped=3, lr=[2.701219512195122e-05], mom=[(0.9, 0.95)]
 72%|███████████████████████████████████████████████████████████████▊                         | 259/361 [00:42<00:17,  5.84batch/s][2024-11-08 17:09:41,404] [INFO] [timer.py:264:stop] epoch=0/micro_step=620/global_step=155, RunningAvgSamplesPerSec=24.288679936323394, CurrSamplesPerSec=21.037682233215396, MemAllocated=11.87GB, MaxMemAllocated=14.2GB
 73%|████████████████████████████████████████████████████████████████▌                        | 262/361 [00:43<00:15,  6.31batch/s][2024-11-08 17:09:42,020] [INFO] [logging.py:129:log_dist] [Rank 0] step=156, skipped=3, lr=[2.646341463414634e-05], mom=[(0.9, 0.95)]
 73%|████████████████████████████████████████████████████████████████▊                        | 263/361 [00:43<00:15,  6.27batch/s][2024-11-08 17:09:42,021] [INFO] [timer.py:264:stop] epoch=0/micro_step=624/global_step=156, RunningAvgSamplesPerSec=24.2992077455268, CurrSamplesPerSec=26.02507576455483, MemAllocated=11.85GB, MaxMemAllocated=14.2GB
 74%|█████████████████████████████████████████████████████████████████▌                       | 266/361 [00:43<00:19,  4.91batch/s][2024-11-08 17:09:42,878] [INFO] [logging.py:129:log_dist] [Rank 0] step=157, skipped=3, lr=[2.5914634146341466e-05], mom=[(0.9, 0.95)]
 74%|█████████████████████████████████████████████████████████████████▊                       | 267/361 [00:44<00:20,  4.67batch/s][2024-11-08 17:09:42,878] [INFO] [timer.py:264:stop] epoch=0/micro_step=628/global_step=157, RunningAvgSamplesPerSec=24.252316455372384, CurrSamplesPerSec=18.69615059676673, MemAllocated=11.93GB, MaxMemAllocated=14.2GB
 75%|██████████████████████████████████████████████████████████████████▊                      | 271/361 [00:44<00:15,  5.75batch/s][2024-11-08 17:09:43,506] [INFO] [logging.py:129:log_dist] [Rank 0] step=158, skipped=3, lr=[2.5365853658536585e-05], mom=[(0.9, 0.95)]
[2024-11-08 17:09:43,506] [INFO] [timer.py:264:stop] epoch=0/micro_step=632/global_step=158, RunningAvgSamplesPerSec=24.260190055508122, CurrSamplesPerSec=25.54564111718296, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 76%|███████████████████████████████████████████████████████████████████▌                     | 274/361 [00:45<00:13,  6.29batch/s][2024-11-08 17:09:44,135] [INFO] [logging.py:129:log_dist] [Rank 0] step=159, skipped=3, lr=[2.481707317073171e-05], mom=[(0.9, 0.95)]
 76%|███████████████████████████████████████████████████████████████████▊                     | 275/361 [00:45<00:14,  6.09batch/s][2024-11-08 17:09:44,135] [INFO] [timer.py:264:stop] epoch=0/micro_step=636/global_step=159, RunningAvgSamplesPerSec=24.267658092300014, CurrSamplesPerSec=25.491775921864143, MemAllocated=11.87GB, MaxMemAllocated=14.2GB
 77%|████████████████████████████████████████████████████████████████████▌                    | 278/361 [00:45<00:13,  6.09batch/s][2024-11-08 17:09:44,798] [INFO] [logging.py:129:log_dist] [Rank 0] step=160, skipped=3, lr=[2.426829268292683e-05], mom=[(0.9, 0.95)]
 77%|████████████████████████████████████████████████████████████████████▊                    | 279/361 [00:46<00:13,  6.13batch/s][2024-11-08 17:09:44,799] [INFO] [timer.py:264:stop] epoch=0/micro_step=640/global_step=160, RunningAvgSamplesPerSec=24.26710791946863, CurrSamplesPerSec=24.18100254733031, MemAllocated=11.88GB, MaxMemAllocated=14.2GB
 77%|████████████████████████████████████████████████████████████████████▊                    | 279/361 [00:45<00:13,  6.11batch/s]Epoch: 1, step: 280, global_step:160, loss: 0.31913166046142577
step: 280-160-160
 78%|█████████████████████████████████████████████████████████████████████▊                   | 283/361 [00:46<00:12,  6.28batch/s][2024-11-08 17:09:45,425] [INFO] [logging.py:129:log_dist] [Rank 0] step=161, skipped=3, lr=[2.3719512195121952e-05], mom=[(0.9, 0.95)]
[2024-11-08 17:09:45,425] [INFO] [timer.py:264:stop] epoch=0/micro_step=644/global_step=161, RunningAvgSamplesPerSec=24.275283506956484, CurrSamplesPerSec=25.640070490582143, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 79%|██████████████████████████████████████████████████████████████████████▌                  | 286/361 [00:47<00:11,  6.35batch/s][2024-11-08 17:09:46,059] [INFO] [logging.py:129:log_dist] [Rank 0] step=162, skipped=3, lr=[2.3170731707317075e-05], mom=[(0.9, 0.95)]
 80%|██████████████████████████████████████████████████████████████████████▊                  | 287/361 [00:47<00:11,  6.26batch/s][2024-11-08 17:09:46,059] [INFO] [timer.py:264:stop] epoch=0/micro_step=648/global_step=162, RunningAvgSamplesPerSec=24.281444324267373, CurrSamplesPerSec=25.30242361586033, MemAllocated=11.86GB, MaxMemAllocated=14.2GB
 80%|███████████████████████████████████████████████████████████████████████▍                 | 290/361 [00:47<00:11,  6.35batch/s][2024-11-08 17:09:46,695] [INFO] [logging.py:129:log_dist] [Rank 0] step=163, skipped=3, lr=[2.2621951219512197e-05], mom=[(0.9, 0.95)]
 81%|███████████████████████████████████████████████████████████████████████▋                 | 291/361 [00:47<00:11,  6.21batch/s][2024-11-08 17:09:46,696] [INFO] [timer.py:264:stop] epoch=0/micro_step=652/global_step=163, RunningAvgSamplesPerSec=24.287026786020355, CurrSamplesPerSec=25.214505068431176, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 81%|████████████████████████████████████████████████████████████████████████▍                | 294/361 [00:48<00:10,  6.32batch/s][2024-11-08 17:09:47,333] [INFO] [logging.py:129:log_dist] [Rank 0] step=164, skipped=3, lr=[2.207317073170732e-05], mom=[(0.9, 0.95)]
 82%|████████████████████████████████████████████████████████████████████████▋                | 295/361 [00:48<00:10,  6.23batch/s][2024-11-08 17:09:47,334] [INFO] [timer.py:264:stop] epoch=0/micro_step=656/global_step=164, RunningAvgSamplesPerSec=24.29212369486296, CurrSamplesPerSec=25.141560562142864, MemAllocated=11.85GB, MaxMemAllocated=14.2GB
 83%|█████████████████████████████████████████████████████████████████████████▍               | 298/361 [00:49<00:09,  6.32batch/s][2024-11-08 17:09:47,970] [INFO] [logging.py:129:log_dist] [Rank 0] step=165, skipped=3, lr=[2.152439024390244e-05], mom=[(0.9, 0.95)]
 83%|█████████████████████████████████████████████████████████████████████████▋               | 299/361 [00:49<00:10,  6.20batch/s][2024-11-08 17:09:47,971] [INFO] [timer.py:264:stop] epoch=0/micro_step=660/global_step=165, RunningAvgSamplesPerSec=24.297442587978647, CurrSamplesPerSec=25.190946985236238, MemAllocated=11.89GB, MaxMemAllocated=14.2GB
 84%|██████████████████████████████████████████████████████████████████████████▍              | 302/361 [00:49<00:09,  6.31batch/s][2024-11-08 17:09:48,625] [INFO] [logging.py:129:log_dist] [Rank 0] step=166, skipped=3, lr=[2.0975609756097564e-05], mom=[(0.9, 0.95)]
 84%|██████████████████████████████████████████████████████████████████████████▋              | 303/361 [00:49<00:09,  6.02batch/s][2024-11-08 17:09:48,625] [INFO] [timer.py:264:stop] epoch=0/micro_step=664/global_step=166, RunningAvgSamplesPerSec=24.29875489767388, CurrSamplesPerSec=24.514535359915264, MemAllocated=11.86GB, MaxMemAllocated=14.2GB
 85%|███████████████████████████████████████████████████████████████████████████▍             | 306/361 [00:50<00:09,  5.99batch/s][2024-11-08 17:09:49,288] [INFO] [logging.py:129:log_dist] [Rank 0] step=167, skipped=3, lr=[2.0426829268292683e-05], mom=[(0.9, 0.95)]
 85%|███████████████████████████████████████████████████████████████████████████▋             | 307/361 [00:50<00:08,  6.09batch/s][2024-11-08 17:09:49,288] [INFO] [timer.py:264:stop] epoch=0/micro_step=668/global_step=167, RunningAvgSamplesPerSec=24.298116555178645, CurrSamplesPerSec=24.19384364153257, MemAllocated=11.86GB, MaxMemAllocated=14.2GB
 86%|████████████████████████████████████████████████████████████████████████████▍            | 310/361 [00:51<00:08,  5.85batch/s][2024-11-08 17:09:49,965] [INFO] [logging.py:129:log_dist] [Rank 0] step=168, skipped=3, lr=[1.9878048780487806e-05], mom=[(0.9, 0.95)]
 86%|████████████████████████████████████████████████████████████████████████████▋            | 311/361 [00:51<00:08,  5.98batch/s][2024-11-08 17:09:49,965] [INFO] [timer.py:264:stop] epoch=0/micro_step=672/global_step=168, RunningAvgSamplesPerSec=24.29440668270727, CurrSamplesPerSec=23.697375869335257, MemAllocated=11.85GB, MaxMemAllocated=14.2GB
 87%|█████████████████████████████████████████████████████████████████████████████▍           | 314/361 [00:51<00:07,  6.40batch/s][2024-11-08 17:09:50,576] [INFO] [logging.py:129:log_dist] [Rank 0] step=169, skipped=3, lr=[1.9329268292682928e-05], mom=[(0.9, 0.95)]
 87%|█████████████████████████████████████████████████████████████████████████████▋           | 315/361 [00:51<00:07,  6.32batch/s][2024-11-08 17:09:50,576] [INFO] [timer.py:264:stop] epoch=0/micro_step=676/global_step=169, RunningAvgSamplesPerSec=24.30522197155159, CurrSamplesPerSec=26.244640855893042, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 88%|██████████████████████████████████████████████████████████████████████████████▍          | 318/361 [00:52<00:06,  6.39batch/s][2024-11-08 17:09:51,208] [INFO] [logging.py:129:log_dist] [Rank 0] step=170, skipped=3, lr=[1.878048780487805e-05], mom=[(0.9, 0.95)]
 88%|██████████████████████████████████████████████████████████████████████████████▋          | 319/361 [00:52<00:06,  6.30batch/s][2024-11-08 17:09:51,209] [INFO] [timer.py:264:stop] epoch=0/micro_step=680/global_step=170, RunningAvgSamplesPerSec=24.311304964991994, CurrSamplesPerSec=25.37170081760081, MemAllocated=11.87GB, MaxMemAllocated=14.2GB
 88%|██████████████████████████████████████████████████████████████████████████████▋          | 319/361 [00:52<00:06,  6.26batch/s]Epoch: 1, step: 320, global_step:170, loss: 0.25384347438812255
step: 320-170-170
 89%|███████████████████████████████████████████████████████████████████████████████▍         | 322/361 [00:52<00:06,  6.29batch/s][2024-11-08 17:09:51,854] [INFO] [logging.py:129:log_dist] [Rank 0] step=171, skipped=3, lr=[1.8231707317073173e-05], mom=[(0.9, 0.95)]
 89%|███████████████████████████████████████████████████████████████████████████████▋         | 323/361 [00:53<00:06,  6.26batch/s][2024-11-08 17:09:51,854] [INFO] [timer.py:264:stop] epoch=0/micro_step=684/global_step=171, RunningAvgSamplesPerSec=24.314519615143027, CurrSamplesPerSec=24.86688493090245, MemAllocated=11.85GB, MaxMemAllocated=14.2GB
 90%|████████████████████████████████████████████████████████████████████████████████▎        | 326/361 [00:53<00:05,  6.34batch/s][2024-11-08 17:09:52,602] [INFO] [logging.py:129:log_dist] [Rank 0] step=172, skipped=3, lr=[1.7682926829268292e-05], mom=[(0.9, 0.95)]
 91%|████████████████████████████████████████████████████████████████████████████████▌        | 327/361 [00:53<00:06,  5.14batch/s][2024-11-08 17:09:52,602] [INFO] [timer.py:264:stop] epoch=0/micro_step=688/global_step=172, RunningAvgSamplesPerSec=24.29530136140045, CurrSamplesPerSec=21.432375040552873, MemAllocated=11.96GB, MaxMemAllocated=14.2GB
 91%|█████████████████████████████████████████████████████████████████████████████████▎       | 330/361 [00:54<00:05,  5.55batch/s][2024-11-08 17:09:53,285] [INFO] [logging.py:129:log_dist] [Rank 0] step=173, skipped=3, lr=[1.7134146341463418e-05], mom=[(0.9, 0.95)]
 92%|█████████████████████████████████████████████████████████████████████████████████▌       | 331/361 [00:54<00:05,  5.77batch/s][2024-11-08 17:09:53,286] [INFO] [timer.py:264:stop] epoch=0/micro_step=692/global_step=173, RunningAvgSamplesPerSec=24.290359544051466, CurrSamplesPerSec=23.47846054741365, MemAllocated=11.87GB, MaxMemAllocated=14.2GB
 93%|██████████████████████████████████████████████████████████████████████████████████▎      | 334/361 [00:55<00:04,  5.80batch/s][2024-11-08 17:09:53,939] [INFO] [logging.py:129:log_dist] [Rank 0] step=174, skipped=3, lr=[1.6585365853658537e-05], mom=[(0.9, 0.95)]
 93%|██████████████████████████████████████████████████████████████████████████████████▌      | 335/361 [00:55<00:04,  5.97batch/s][2024-11-08 17:09:53,940] [INFO] [timer.py:264:stop] epoch=0/micro_step=696/global_step=174, RunningAvgSamplesPerSec=24.29168877972303, CurrSamplesPerSec=24.521110120857482, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 94%|███████████████████████████████████████████████████████████████████████████████████▎     | 338/361 [00:55<00:03,  6.40batch/s][2024-11-08 17:09:54,561] [INFO] [logging.py:129:log_dist] [Rank 0] step=175, skipped=3, lr=[1.603658536585366e-05], mom=[(0.9, 0.95)]
 94%|███████████████████████████████████████████████████████████████████████████████████▌     | 339/361 [00:55<00:03,  6.20batch/s][2024-11-08 17:09:54,561] [INFO] [timer.py:264:stop] epoch=0/micro_step=700/global_step=175, RunningAvgSamplesPerSec=24.29996514861986, CurrSamplesPerSec=25.812588797242434, MemAllocated=11.88GB, MaxMemAllocated=14.2GB
 95%|████████████████████████████████████████████████████████████████████████████████████▌    | 343/361 [00:56<00:02,  6.21batch/s][2024-11-08 17:09:55,224] [INFO] [logging.py:129:log_dist] [Rank 0] step=176, skipped=3, lr=[1.5487804878048782e-05], mom=[(0.9, 0.95)]
 95%|████████████████████████████████████████████████████████████████████████████████████▌    | 343/361 [00:56<00:02,  6.23batch/s][2024-11-08 17:09:55,224] [INFO] [timer.py:264:stop] epoch=0/micro_step=704/global_step=176, RunningAvgSamplesPerSec=24.299338244198974, CurrSamplesPerSec=24.191331886681077, MemAllocated=11.86GB, MaxMemAllocated=14.2GB
 96%|█████████████████████████████████████████████████████████████████████████████████████▎   | 346/361 [00:56<00:02,  6.48batch/s][2024-11-08 17:09:55,838] [INFO] [logging.py:129:log_dist] [Rank 0] step=177, skipped=3, lr=[1.4939024390243904e-05], mom=[(0.9, 0.95)]
 96%|█████████████████████████████████████████████████████████████████████████████████████▌   | 347/361 [00:57<00:02,  6.39batch/s][2024-11-08 17:09:55,838] [INFO] [timer.py:264:stop] epoch=0/micro_step=708/global_step=177, RunningAvgSamplesPerSec=24.30910850707453, CurrSamplesPerSec=26.137710382287874, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 97%|██████████████████████████████████████████████████████████████████████████████████████▎  | 350/361 [00:57<00:01,  6.40batch/s][2024-11-08 17:09:56,624] [INFO] [logging.py:129:log_dist] [Rank 0] step=178, skipped=3, lr=[1.4390243902439027e-05], mom=[(0.9, 0.95)]
 97%|██████████████████████████████████████████████████████████████████████████████████████▌  | 351/361 [00:57<00:02,  4.87batch/s][2024-11-08 17:09:56,625] [INFO] [timer.py:264:stop] epoch=0/micro_step=712/global_step=178, RunningAvgSamplesPerSec=24.28260899514373, CurrSamplesPerSec=20.392356713284403, MemAllocated=11.93GB, MaxMemAllocated=14.2GB
 98%|███████████████████████████████████████████████████████████████████████████████████████▎ | 354/361 [00:58<00:01,  5.85batch/s][2024-11-08 17:09:57,236] [INFO] [logging.py:129:log_dist] [Rank 0] step=179, skipped=3, lr=[1.3841463414634147e-05], mom=[(0.9, 0.95)]
 98%|███████████████████████████████████████████████████████████████████████████████████████▌ | 355/361 [00:58<00:00,  6.00batch/s][2024-11-08 17:09:57,237] [INFO] [timer.py:264:stop] epoch=0/micro_step=716/global_step=179, RunningAvgSamplesPerSec=24.292699698956497, CurrSamplesPerSec=26.209555385812912, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 99%|████████████████████████████████████████████████████████████████████████████████████████▎| 358/361 [00:58<00:00,  6.33batch/s][2024-11-08 17:09:57,859] [INFO] [logging.py:129:log_dist] [Rank 0] step=180, skipped=3, lr=[1.329268292682927e-05], mom=[(0.9, 0.95)]
 99%|████████████████████████████████████████████████████████████████████████████████████████▌| 359/361 [00:59<00:00,  6.27batch/s][2024-11-08 17:09:57,859] [INFO] [timer.py:264:stop] epoch=0/micro_step=720/global_step=180, RunningAvgSamplesPerSec=24.300508226461744, CurrSamplesPerSec=25.766424596691824, MemAllocated=11.84GB, MaxMemAllocated=14.2GB
 99%|████████████████████████████████████████████████████████████████████████████████████████▌| 359/361 [00:59<00:00,  6.24batch/s]Epoch: 1, step: 360, global_step:180, loss: 0.2547494947910309
step: 360-180-180
100%|█████████████████████████████████████████████████████████████████████████████████████████| 361/361 [00:59<00:00,  6.07batch/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████| 361/361 [00:59<00:00,  6.07batch/s]

100%|█████████████████████████████████████████████████████████████████████████████████████████| 361/361 [00:59<00:00,  6.07batch/s]
[2024-11-08 17:10:00,482] [INFO] [launch.py:351:main] Process 3443025 exits successfully.
[2024-11-08 17:10:00,482] [INFO] [launch.py:351:main] Process 3443026 exits successfully.
[2024-11-08 17:10:00,482] [INFO] [launch.py:351:main] Process 3443024 exits successfully.
[2024-11-08 17:10:00,482] [INFO] [launch.py:351:main] Process 3443023 exits successfully.
  • 模型推理测试(字数限制,见下一篇)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值